Loading…
Behavioral trace data in an online learning environment as indicators of learning engagement in university students
Learning in asynchronous online settings (AOSs) is challenging for university students. However, the construct of learning engagement (LE) represents a possible lever to identify and reduce challenges while learning online, especially, in AOSs. Learning analytics provides a fruitful framework to ana...
Saved in:
Published in: | Frontiers in psychology 2024-10, Vol.15, p.1396881 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c306t-e83b40ecbe7f47c1e537b1c8bf2136fcfeb2320d0f13b4dde3f111f640c9fd1c3 |
container_end_page | |
container_issue | |
container_start_page | 1396881 |
container_title | Frontiers in psychology |
container_volume | 15 |
creator | Winter, Marc Mordel, Julia Mendzheritskaya, Julia Biedermann, Daniel Ciordas-Hertel, George-Petru Hahnel, Carolin Bengs, Daniel Wolter, Ilka Goldhammer, Frank Drachsler, Hendrik Artelt, Cordula Horz, Holger |
description | Learning in asynchronous online settings (AOSs) is challenging for university students. However, the construct of learning engagement (LE) represents a possible lever to identify and reduce challenges while learning online, especially, in AOSs. Learning analytics provides a fruitful framework to analyze students' learning processes and LE via trace data. The study, therefore, addresses the questions of whether LE can be modeled with the sub-dimensions of effort, attention, and content interest and by which trace data, derived from behavior within an AOS, these facets of LE are represented in self-reports. Participants were 764 university students attending an AOS. The results of best-subset regression analysis show that a model combining multiple indicators can account for a proportion of the variance in students' LE (highly significant
between 0.04 and 0.13). The identified set of indicators is stable over time supporting the transferability to similar learning contexts. The results of this study can contribute to both research on learning processes in AOSs in higher education and the application of learning analytics in university teaching (e.g., modeling automated feedback). |
doi_str_mv | 10.3389/fpsyg.2024.1396881 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a39fbc934e95484392ab4467d4c4de83</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a39fbc934e95484392ab4467d4c4de83</doaj_id><sourcerecordid>3125495683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-e83b40ecbe7f47c1e537b1c8bf2136fcfeb2320d0f13b4dde3f111f640c9fd1c3</originalsourceid><addsrcrecordid>eNpVkU1vGyEQhldVqyZK8wd6qDj2YocBdpc9VW3Uj0iRcmnPiIVhQ7QGF1hL_vclths5XAYN7zwzzNs0H4GuOZfDjdvm_bRmlIk18KGTEt40l9B1YgW0l2_P7hfNdc5PtB5BGaXsfXPBh5b2VMJlk7_ho975mPRMStIGidVFEx-IDiSG2QckM-oUfJgIhp1PMWwwFKJzFVlvdIkpk-jOVZOe8CCqmCX4Habsy57kstiazR-ad07PGa9P8ar58-P779tfq_uHn3e3X-9XhtOurFDyUVA0I_ZO9Aaw5f0IRo6OAe-ccTgyzqilDqrQWuQOAFwnqBmcBcOvmrsj10b9pLbJb3Taq6i9OiRimpROxZsZleaDG83ABQ6tkIIPTI9CdL0VRtg6SGV9ObK2y7hBa-o_6speQV-_BP-oprhTAC2XFGglfD4RUvy7YC5q47PBedYB45IVB9aKoe0OzdhRalLMOaF76QNUPbuvDu6rZ_fVyf1a9Ol8wpeS_17zfz1jr_A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3125495683</pqid></control><display><type>article</type><title>Behavioral trace data in an online learning environment as indicators of learning engagement in university students</title><source>PubMed Central Free</source><creator>Winter, Marc ; Mordel, Julia ; Mendzheritskaya, Julia ; Biedermann, Daniel ; Ciordas-Hertel, George-Petru ; Hahnel, Carolin ; Bengs, Daniel ; Wolter, Ilka ; Goldhammer, Frank ; Drachsler, Hendrik ; Artelt, Cordula ; Horz, Holger</creator><creatorcontrib>Winter, Marc ; Mordel, Julia ; Mendzheritskaya, Julia ; Biedermann, Daniel ; Ciordas-Hertel, George-Petru ; Hahnel, Carolin ; Bengs, Daniel ; Wolter, Ilka ; Goldhammer, Frank ; Drachsler, Hendrik ; Artelt, Cordula ; Horz, Holger</creatorcontrib><description>Learning in asynchronous online settings (AOSs) is challenging for university students. However, the construct of learning engagement (LE) represents a possible lever to identify and reduce challenges while learning online, especially, in AOSs. Learning analytics provides a fruitful framework to analyze students' learning processes and LE via trace data. The study, therefore, addresses the questions of whether LE can be modeled with the sub-dimensions of effort, attention, and content interest and by which trace data, derived from behavior within an AOS, these facets of LE are represented in self-reports. Participants were 764 university students attending an AOS. The results of best-subset regression analysis show that a model combining multiple indicators can account for a proportion of the variance in students' LE (highly significant
between 0.04 and 0.13). The identified set of indicators is stable over time supporting the transferability to similar learning contexts. The results of this study can contribute to both research on learning processes in AOSs in higher education and the application of learning analytics in university teaching (e.g., modeling automated feedback).</description><identifier>ISSN: 1664-1078</identifier><identifier>EISSN: 1664-1078</identifier><identifier>DOI: 10.3389/fpsyg.2024.1396881</identifier><identifier>PMID: 39507081</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>asynchronous online learning ; best-subset regression ; learning analytics ; learning engagement ; Psychology ; trace data ; university student behavior</subject><ispartof>Frontiers in psychology, 2024-10, Vol.15, p.1396881</ispartof><rights>Copyright © 2024 Winter, Mordel, Mendzheritskaya, Biedermann, Ciordas-Hertel, Hahnel, Bengs, Wolter, Goldhammer, Drachsler, Artelt and Horz.</rights><rights>Copyright © 2024 Winter, Mordel, Mendzheritskaya, Biedermann, Ciordas-Hertel, Hahnel, Bengs, Wolter, Goldhammer, Drachsler, Artelt and Horz. 2024 Winter, Mordel, Mendzheritskaya, Biedermann, Ciordas-Hertel, Hahnel, Bengs, Wolter, Goldhammer, Drachsler, Artelt and Horz</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-e83b40ecbe7f47c1e537b1c8bf2136fcfeb2320d0f13b4dde3f111f640c9fd1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538010/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538010/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39507081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Winter, Marc</creatorcontrib><creatorcontrib>Mordel, Julia</creatorcontrib><creatorcontrib>Mendzheritskaya, Julia</creatorcontrib><creatorcontrib>Biedermann, Daniel</creatorcontrib><creatorcontrib>Ciordas-Hertel, George-Petru</creatorcontrib><creatorcontrib>Hahnel, Carolin</creatorcontrib><creatorcontrib>Bengs, Daniel</creatorcontrib><creatorcontrib>Wolter, Ilka</creatorcontrib><creatorcontrib>Goldhammer, Frank</creatorcontrib><creatorcontrib>Drachsler, Hendrik</creatorcontrib><creatorcontrib>Artelt, Cordula</creatorcontrib><creatorcontrib>Horz, Holger</creatorcontrib><title>Behavioral trace data in an online learning environment as indicators of learning engagement in university students</title><title>Frontiers in psychology</title><addtitle>Front Psychol</addtitle><description>Learning in asynchronous online settings (AOSs) is challenging for university students. However, the construct of learning engagement (LE) represents a possible lever to identify and reduce challenges while learning online, especially, in AOSs. Learning analytics provides a fruitful framework to analyze students' learning processes and LE via trace data. The study, therefore, addresses the questions of whether LE can be modeled with the sub-dimensions of effort, attention, and content interest and by which trace data, derived from behavior within an AOS, these facets of LE are represented in self-reports. Participants were 764 university students attending an AOS. The results of best-subset regression analysis show that a model combining multiple indicators can account for a proportion of the variance in students' LE (highly significant
between 0.04 and 0.13). The identified set of indicators is stable over time supporting the transferability to similar learning contexts. The results of this study can contribute to both research on learning processes in AOSs in higher education and the application of learning analytics in university teaching (e.g., modeling automated feedback).</description><subject>asynchronous online learning</subject><subject>best-subset regression</subject><subject>learning analytics</subject><subject>learning engagement</subject><subject>Psychology</subject><subject>trace data</subject><subject>university student behavior</subject><issn>1664-1078</issn><issn>1664-1078</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1vGyEQhldVqyZK8wd6qDj2YocBdpc9VW3Uj0iRcmnPiIVhQ7QGF1hL_vclths5XAYN7zwzzNs0H4GuOZfDjdvm_bRmlIk18KGTEt40l9B1YgW0l2_P7hfNdc5PtB5BGaXsfXPBh5b2VMJlk7_ho975mPRMStIGidVFEx-IDiSG2QckM-oUfJgIhp1PMWwwFKJzFVlvdIkpk-jOVZOe8CCqmCX4Habsy57kstiazR-ad07PGa9P8ar58-P779tfq_uHn3e3X-9XhtOurFDyUVA0I_ZO9Aaw5f0IRo6OAe-ccTgyzqilDqrQWuQOAFwnqBmcBcOvmrsj10b9pLbJb3Taq6i9OiRimpROxZsZleaDG83ABQ6tkIIPTI9CdL0VRtg6SGV9ObK2y7hBa-o_6speQV-_BP-oprhTAC2XFGglfD4RUvy7YC5q47PBedYB45IVB9aKoe0OzdhRalLMOaF76QNUPbuvDu6rZ_fVyf1a9Ol8wpeS_17zfz1jr_A</recordid><startdate>20241023</startdate><enddate>20241023</enddate><creator>Winter, Marc</creator><creator>Mordel, Julia</creator><creator>Mendzheritskaya, Julia</creator><creator>Biedermann, Daniel</creator><creator>Ciordas-Hertel, George-Petru</creator><creator>Hahnel, Carolin</creator><creator>Bengs, Daniel</creator><creator>Wolter, Ilka</creator><creator>Goldhammer, Frank</creator><creator>Drachsler, Hendrik</creator><creator>Artelt, Cordula</creator><creator>Horz, Holger</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241023</creationdate><title>Behavioral trace data in an online learning environment as indicators of learning engagement in university students</title><author>Winter, Marc ; Mordel, Julia ; Mendzheritskaya, Julia ; Biedermann, Daniel ; Ciordas-Hertel, George-Petru ; Hahnel, Carolin ; Bengs, Daniel ; Wolter, Ilka ; Goldhammer, Frank ; Drachsler, Hendrik ; Artelt, Cordula ; Horz, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-e83b40ecbe7f47c1e537b1c8bf2136fcfeb2320d0f13b4dde3f111f640c9fd1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>asynchronous online learning</topic><topic>best-subset regression</topic><topic>learning analytics</topic><topic>learning engagement</topic><topic>Psychology</topic><topic>trace data</topic><topic>university student behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winter, Marc</creatorcontrib><creatorcontrib>Mordel, Julia</creatorcontrib><creatorcontrib>Mendzheritskaya, Julia</creatorcontrib><creatorcontrib>Biedermann, Daniel</creatorcontrib><creatorcontrib>Ciordas-Hertel, George-Petru</creatorcontrib><creatorcontrib>Hahnel, Carolin</creatorcontrib><creatorcontrib>Bengs, Daniel</creatorcontrib><creatorcontrib>Wolter, Ilka</creatorcontrib><creatorcontrib>Goldhammer, Frank</creatorcontrib><creatorcontrib>Drachsler, Hendrik</creatorcontrib><creatorcontrib>Artelt, Cordula</creatorcontrib><creatorcontrib>Horz, Holger</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winter, Marc</au><au>Mordel, Julia</au><au>Mendzheritskaya, Julia</au><au>Biedermann, Daniel</au><au>Ciordas-Hertel, George-Petru</au><au>Hahnel, Carolin</au><au>Bengs, Daniel</au><au>Wolter, Ilka</au><au>Goldhammer, Frank</au><au>Drachsler, Hendrik</au><au>Artelt, Cordula</au><au>Horz, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavioral trace data in an online learning environment as indicators of learning engagement in university students</atitle><jtitle>Frontiers in psychology</jtitle><addtitle>Front Psychol</addtitle><date>2024-10-23</date><risdate>2024</risdate><volume>15</volume><spage>1396881</spage><pages>1396881-</pages><issn>1664-1078</issn><eissn>1664-1078</eissn><abstract>Learning in asynchronous online settings (AOSs) is challenging for university students. However, the construct of learning engagement (LE) represents a possible lever to identify and reduce challenges while learning online, especially, in AOSs. Learning analytics provides a fruitful framework to analyze students' learning processes and LE via trace data. The study, therefore, addresses the questions of whether LE can be modeled with the sub-dimensions of effort, attention, and content interest and by which trace data, derived from behavior within an AOS, these facets of LE are represented in self-reports. Participants were 764 university students attending an AOS. The results of best-subset regression analysis show that a model combining multiple indicators can account for a proportion of the variance in students' LE (highly significant
between 0.04 and 0.13). The identified set of indicators is stable over time supporting the transferability to similar learning contexts. The results of this study can contribute to both research on learning processes in AOSs in higher education and the application of learning analytics in university teaching (e.g., modeling automated feedback).</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>39507081</pmid><doi>10.3389/fpsyg.2024.1396881</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-1078 |
ispartof | Frontiers in psychology, 2024-10, Vol.15, p.1396881 |
issn | 1664-1078 1664-1078 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a39fbc934e95484392ab4467d4c4de83 |
source | PubMed Central Free |
subjects | asynchronous online learning best-subset regression learning analytics learning engagement Psychology trace data university student behavior |
title | Behavioral trace data in an online learning environment as indicators of learning engagement in university students |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavioral%20trace%20data%20in%20an%20online%20learning%20environment%20as%20indicators%20of%20learning%20engagement%20in%20university%20students&rft.jtitle=Frontiers%20in%20psychology&rft.au=Winter,%20Marc&rft.date=2024-10-23&rft.volume=15&rft.spage=1396881&rft.pages=1396881-&rft.issn=1664-1078&rft.eissn=1664-1078&rft_id=info:doi/10.3389/fpsyg.2024.1396881&rft_dat=%3Cproquest_doaj_%3E3125495683%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-e83b40ecbe7f47c1e537b1c8bf2136fcfeb2320d0f13b4dde3f111f640c9fd1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3125495683&rft_id=info:pmid/39507081&rfr_iscdi=true |