Loading…

Behavioral trace data in an online learning environment as indicators of learning engagement in university students

Learning in asynchronous online settings (AOSs) is challenging for university students. However, the construct of learning engagement (LE) represents a possible lever to identify and reduce challenges while learning online, especially, in AOSs. Learning analytics provides a fruitful framework to ana...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in psychology 2024-10, Vol.15, p.1396881
Main Authors: Winter, Marc, Mordel, Julia, Mendzheritskaya, Julia, Biedermann, Daniel, Ciordas-Hertel, George-Petru, Hahnel, Carolin, Bengs, Daniel, Wolter, Ilka, Goldhammer, Frank, Drachsler, Hendrik, Artelt, Cordula, Horz, Holger
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c306t-e83b40ecbe7f47c1e537b1c8bf2136fcfeb2320d0f13b4dde3f111f640c9fd1c3
container_end_page
container_issue
container_start_page 1396881
container_title Frontiers in psychology
container_volume 15
creator Winter, Marc
Mordel, Julia
Mendzheritskaya, Julia
Biedermann, Daniel
Ciordas-Hertel, George-Petru
Hahnel, Carolin
Bengs, Daniel
Wolter, Ilka
Goldhammer, Frank
Drachsler, Hendrik
Artelt, Cordula
Horz, Holger
description Learning in asynchronous online settings (AOSs) is challenging for university students. However, the construct of learning engagement (LE) represents a possible lever to identify and reduce challenges while learning online, especially, in AOSs. Learning analytics provides a fruitful framework to analyze students' learning processes and LE via trace data. The study, therefore, addresses the questions of whether LE can be modeled with the sub-dimensions of effort, attention, and content interest and by which trace data, derived from behavior within an AOS, these facets of LE are represented in self-reports. Participants were 764 university students attending an AOS. The results of best-subset regression analysis show that a model combining multiple indicators can account for a proportion of the variance in students' LE (highly significant between 0.04 and 0.13). The identified set of indicators is stable over time supporting the transferability to similar learning contexts. The results of this study can contribute to both research on learning processes in AOSs in higher education and the application of learning analytics in university teaching (e.g., modeling automated feedback).
doi_str_mv 10.3389/fpsyg.2024.1396881
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a39fbc934e95484392ab4467d4c4de83</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a39fbc934e95484392ab4467d4c4de83</doaj_id><sourcerecordid>3125495683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-e83b40ecbe7f47c1e537b1c8bf2136fcfeb2320d0f13b4dde3f111f640c9fd1c3</originalsourceid><addsrcrecordid>eNpVkU1vGyEQhldVqyZK8wd6qDj2YocBdpc9VW3Uj0iRcmnPiIVhQ7QGF1hL_vclths5XAYN7zwzzNs0H4GuOZfDjdvm_bRmlIk18KGTEt40l9B1YgW0l2_P7hfNdc5PtB5BGaXsfXPBh5b2VMJlk7_ho975mPRMStIGidVFEx-IDiSG2QckM-oUfJgIhp1PMWwwFKJzFVlvdIkpk-jOVZOe8CCqmCX4Habsy57kstiazR-ad07PGa9P8ar58-P779tfq_uHn3e3X-9XhtOurFDyUVA0I_ZO9Aaw5f0IRo6OAe-ccTgyzqilDqrQWuQOAFwnqBmcBcOvmrsj10b9pLbJb3Taq6i9OiRimpROxZsZleaDG83ABQ6tkIIPTI9CdL0VRtg6SGV9ObK2y7hBa-o_6speQV-_BP-oprhTAC2XFGglfD4RUvy7YC5q47PBedYB45IVB9aKoe0OzdhRalLMOaF76QNUPbuvDu6rZ_fVyf1a9Ol8wpeS_17zfz1jr_A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3125495683</pqid></control><display><type>article</type><title>Behavioral trace data in an online learning environment as indicators of learning engagement in university students</title><source>PubMed Central Free</source><creator>Winter, Marc ; Mordel, Julia ; Mendzheritskaya, Julia ; Biedermann, Daniel ; Ciordas-Hertel, George-Petru ; Hahnel, Carolin ; Bengs, Daniel ; Wolter, Ilka ; Goldhammer, Frank ; Drachsler, Hendrik ; Artelt, Cordula ; Horz, Holger</creator><creatorcontrib>Winter, Marc ; Mordel, Julia ; Mendzheritskaya, Julia ; Biedermann, Daniel ; Ciordas-Hertel, George-Petru ; Hahnel, Carolin ; Bengs, Daniel ; Wolter, Ilka ; Goldhammer, Frank ; Drachsler, Hendrik ; Artelt, Cordula ; Horz, Holger</creatorcontrib><description>Learning in asynchronous online settings (AOSs) is challenging for university students. However, the construct of learning engagement (LE) represents a possible lever to identify and reduce challenges while learning online, especially, in AOSs. Learning analytics provides a fruitful framework to analyze students' learning processes and LE via trace data. The study, therefore, addresses the questions of whether LE can be modeled with the sub-dimensions of effort, attention, and content interest and by which trace data, derived from behavior within an AOS, these facets of LE are represented in self-reports. Participants were 764 university students attending an AOS. The results of best-subset regression analysis show that a model combining multiple indicators can account for a proportion of the variance in students' LE (highly significant between 0.04 and 0.13). The identified set of indicators is stable over time supporting the transferability to similar learning contexts. The results of this study can contribute to both research on learning processes in AOSs in higher education and the application of learning analytics in university teaching (e.g., modeling automated feedback).</description><identifier>ISSN: 1664-1078</identifier><identifier>EISSN: 1664-1078</identifier><identifier>DOI: 10.3389/fpsyg.2024.1396881</identifier><identifier>PMID: 39507081</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>asynchronous online learning ; best-subset regression ; learning analytics ; learning engagement ; Psychology ; trace data ; university student behavior</subject><ispartof>Frontiers in psychology, 2024-10, Vol.15, p.1396881</ispartof><rights>Copyright © 2024 Winter, Mordel, Mendzheritskaya, Biedermann, Ciordas-Hertel, Hahnel, Bengs, Wolter, Goldhammer, Drachsler, Artelt and Horz.</rights><rights>Copyright © 2024 Winter, Mordel, Mendzheritskaya, Biedermann, Ciordas-Hertel, Hahnel, Bengs, Wolter, Goldhammer, Drachsler, Artelt and Horz. 2024 Winter, Mordel, Mendzheritskaya, Biedermann, Ciordas-Hertel, Hahnel, Bengs, Wolter, Goldhammer, Drachsler, Artelt and Horz</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-e83b40ecbe7f47c1e537b1c8bf2136fcfeb2320d0f13b4dde3f111f640c9fd1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538010/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538010/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39507081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Winter, Marc</creatorcontrib><creatorcontrib>Mordel, Julia</creatorcontrib><creatorcontrib>Mendzheritskaya, Julia</creatorcontrib><creatorcontrib>Biedermann, Daniel</creatorcontrib><creatorcontrib>Ciordas-Hertel, George-Petru</creatorcontrib><creatorcontrib>Hahnel, Carolin</creatorcontrib><creatorcontrib>Bengs, Daniel</creatorcontrib><creatorcontrib>Wolter, Ilka</creatorcontrib><creatorcontrib>Goldhammer, Frank</creatorcontrib><creatorcontrib>Drachsler, Hendrik</creatorcontrib><creatorcontrib>Artelt, Cordula</creatorcontrib><creatorcontrib>Horz, Holger</creatorcontrib><title>Behavioral trace data in an online learning environment as indicators of learning engagement in university students</title><title>Frontiers in psychology</title><addtitle>Front Psychol</addtitle><description>Learning in asynchronous online settings (AOSs) is challenging for university students. However, the construct of learning engagement (LE) represents a possible lever to identify and reduce challenges while learning online, especially, in AOSs. Learning analytics provides a fruitful framework to analyze students' learning processes and LE via trace data. The study, therefore, addresses the questions of whether LE can be modeled with the sub-dimensions of effort, attention, and content interest and by which trace data, derived from behavior within an AOS, these facets of LE are represented in self-reports. Participants were 764 university students attending an AOS. The results of best-subset regression analysis show that a model combining multiple indicators can account for a proportion of the variance in students' LE (highly significant between 0.04 and 0.13). The identified set of indicators is stable over time supporting the transferability to similar learning contexts. The results of this study can contribute to both research on learning processes in AOSs in higher education and the application of learning analytics in university teaching (e.g., modeling automated feedback).</description><subject>asynchronous online learning</subject><subject>best-subset regression</subject><subject>learning analytics</subject><subject>learning engagement</subject><subject>Psychology</subject><subject>trace data</subject><subject>university student behavior</subject><issn>1664-1078</issn><issn>1664-1078</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1vGyEQhldVqyZK8wd6qDj2YocBdpc9VW3Uj0iRcmnPiIVhQ7QGF1hL_vclths5XAYN7zwzzNs0H4GuOZfDjdvm_bRmlIk18KGTEt40l9B1YgW0l2_P7hfNdc5PtB5BGaXsfXPBh5b2VMJlk7_ho975mPRMStIGidVFEx-IDiSG2QckM-oUfJgIhp1PMWwwFKJzFVlvdIkpk-jOVZOe8CCqmCX4Habsy57kstiazR-ad07PGa9P8ar58-P779tfq_uHn3e3X-9XhtOurFDyUVA0I_ZO9Aaw5f0IRo6OAe-ccTgyzqilDqrQWuQOAFwnqBmcBcOvmrsj10b9pLbJb3Taq6i9OiRimpROxZsZleaDG83ABQ6tkIIPTI9CdL0VRtg6SGV9ObK2y7hBa-o_6speQV-_BP-oprhTAC2XFGglfD4RUvy7YC5q47PBedYB45IVB9aKoe0OzdhRalLMOaF76QNUPbuvDu6rZ_fVyf1a9Ol8wpeS_17zfz1jr_A</recordid><startdate>20241023</startdate><enddate>20241023</enddate><creator>Winter, Marc</creator><creator>Mordel, Julia</creator><creator>Mendzheritskaya, Julia</creator><creator>Biedermann, Daniel</creator><creator>Ciordas-Hertel, George-Petru</creator><creator>Hahnel, Carolin</creator><creator>Bengs, Daniel</creator><creator>Wolter, Ilka</creator><creator>Goldhammer, Frank</creator><creator>Drachsler, Hendrik</creator><creator>Artelt, Cordula</creator><creator>Horz, Holger</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241023</creationdate><title>Behavioral trace data in an online learning environment as indicators of learning engagement in university students</title><author>Winter, Marc ; Mordel, Julia ; Mendzheritskaya, Julia ; Biedermann, Daniel ; Ciordas-Hertel, George-Petru ; Hahnel, Carolin ; Bengs, Daniel ; Wolter, Ilka ; Goldhammer, Frank ; Drachsler, Hendrik ; Artelt, Cordula ; Horz, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-e83b40ecbe7f47c1e537b1c8bf2136fcfeb2320d0f13b4dde3f111f640c9fd1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>asynchronous online learning</topic><topic>best-subset regression</topic><topic>learning analytics</topic><topic>learning engagement</topic><topic>Psychology</topic><topic>trace data</topic><topic>university student behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winter, Marc</creatorcontrib><creatorcontrib>Mordel, Julia</creatorcontrib><creatorcontrib>Mendzheritskaya, Julia</creatorcontrib><creatorcontrib>Biedermann, Daniel</creatorcontrib><creatorcontrib>Ciordas-Hertel, George-Petru</creatorcontrib><creatorcontrib>Hahnel, Carolin</creatorcontrib><creatorcontrib>Bengs, Daniel</creatorcontrib><creatorcontrib>Wolter, Ilka</creatorcontrib><creatorcontrib>Goldhammer, Frank</creatorcontrib><creatorcontrib>Drachsler, Hendrik</creatorcontrib><creatorcontrib>Artelt, Cordula</creatorcontrib><creatorcontrib>Horz, Holger</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winter, Marc</au><au>Mordel, Julia</au><au>Mendzheritskaya, Julia</au><au>Biedermann, Daniel</au><au>Ciordas-Hertel, George-Petru</au><au>Hahnel, Carolin</au><au>Bengs, Daniel</au><au>Wolter, Ilka</au><au>Goldhammer, Frank</au><au>Drachsler, Hendrik</au><au>Artelt, Cordula</au><au>Horz, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavioral trace data in an online learning environment as indicators of learning engagement in university students</atitle><jtitle>Frontiers in psychology</jtitle><addtitle>Front Psychol</addtitle><date>2024-10-23</date><risdate>2024</risdate><volume>15</volume><spage>1396881</spage><pages>1396881-</pages><issn>1664-1078</issn><eissn>1664-1078</eissn><abstract>Learning in asynchronous online settings (AOSs) is challenging for university students. However, the construct of learning engagement (LE) represents a possible lever to identify and reduce challenges while learning online, especially, in AOSs. Learning analytics provides a fruitful framework to analyze students' learning processes and LE via trace data. The study, therefore, addresses the questions of whether LE can be modeled with the sub-dimensions of effort, attention, and content interest and by which trace data, derived from behavior within an AOS, these facets of LE are represented in self-reports. Participants were 764 university students attending an AOS. The results of best-subset regression analysis show that a model combining multiple indicators can account for a proportion of the variance in students' LE (highly significant between 0.04 and 0.13). The identified set of indicators is stable over time supporting the transferability to similar learning contexts. The results of this study can contribute to both research on learning processes in AOSs in higher education and the application of learning analytics in university teaching (e.g., modeling automated feedback).</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>39507081</pmid><doi>10.3389/fpsyg.2024.1396881</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-1078
ispartof Frontiers in psychology, 2024-10, Vol.15, p.1396881
issn 1664-1078
1664-1078
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a39fbc934e95484392ab4467d4c4de83
source PubMed Central Free
subjects asynchronous online learning
best-subset regression
learning analytics
learning engagement
Psychology
trace data
university student behavior
title Behavioral trace data in an online learning environment as indicators of learning engagement in university students
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavioral%20trace%20data%20in%20an%20online%20learning%20environment%20as%20indicators%20of%20learning%20engagement%20in%20university%20students&rft.jtitle=Frontiers%20in%20psychology&rft.au=Winter,%20Marc&rft.date=2024-10-23&rft.volume=15&rft.spage=1396881&rft.pages=1396881-&rft.issn=1664-1078&rft.eissn=1664-1078&rft_id=info:doi/10.3389/fpsyg.2024.1396881&rft_dat=%3Cproquest_doaj_%3E3125495683%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-e83b40ecbe7f47c1e537b1c8bf2136fcfeb2320d0f13b4dde3f111f640c9fd1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3125495683&rft_id=info:pmid/39507081&rfr_iscdi=true