Loading…

Multiplexed Supply of a MISO Wireless Power Transfer System for Battery-Free Wireless Sensors

Multi-input single output wireless power transmission (MISO-WPT) systems have decisive advantages concerning flexible receiver position in comparison to single coil systems. However, the supply of the primary side brings a large uncertainty in case of variable positions of the secondary side. In thi...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2020-03, Vol.13 (5), p.1244
Main Authors: Bouattour, Ghada, Elhawy, Mohamed, Naifar, Slim, Viehweger, Christian, Ben Jmaa Derbel, Houda, Kanoun, Olfa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multi-input single output wireless power transmission (MISO-WPT) systems have decisive advantages concerning flexible receiver position in comparison to single coil systems. However, the supply of the primary side brings a large uncertainty in case of variable positions of the secondary side. In this paper, a compact multiplexed primary side electronic circuit is proposed, which includes only one signal generator, a passive peak detector, a communication module, and a compensation capacitor. The novel approach has been studied and evaluated for a MISO-WPT system having a 16 coils on primary side and one coil on secondary side having the double diameter. Results show that a standard microcontroller, in this case an STM32, is sufficient for the control of the whole system, so that the costs and the energy consumption are significantly reduced. An activation strategy has been proposed, which allows to determine the optimal transmitting coil for each position of the receiving coil and to switch it on. The time-to-start-charging at different positions of the receiving coil and different number of neighbors has been determined. It remains in all cases under 2.5 s.
ISSN:1996-1073
1996-1073
DOI:10.3390/en13051244