Loading…
Short Fiber-Reinforced Polymer Polyamide 6 Lugs and Selective Laser-Melted Ti-6Al-4V Bushing Contact Cohesive Zone Model Mode II Parameters’ Evaluation
This paper discusses an approach to estimating the parameters of the cohesive zone model (CZM) by mode II by extruding the bushing along the lug axis. This method of evaluation requires small samples, which is particularly relevant when investigating short fiber-reinforced polymers (SFRPs) with addi...
Saved in:
Published in: | Computation 2024-05, Vol.12 (5), p.105 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper discusses an approach to estimating the parameters of the cohesive zone model (CZM) by mode II by extruding the bushing along the lug axis. This method of evaluation requires small samples, which is particularly relevant when investigating short fiber-reinforced polymers (SFRPs) with additively manufactured embedded elements. Adhesion is investigated on the example of 30% carbon fiber-reinforced polyamide-6 molded to Ti-6Al-4V (VT6) selective laser-melted (SLM) alloy bushing in cases of a roughness Ra = 2.66 μm (vibratory finishing), Ra = 8.79 μm (sandblasting), and Ra = 10.02 (directly from SLM). The values of the maximum equivalent tangential contact stress were in a range from 1.1 MPa to 9.5 MPa, while the critical fracture energy for tangential slip was estimated at 15 N/mm for all cases. Experimental validation of the obtained CZM mode II was carried out by evaluating the load-carrying capacity of the lugs with different bushings. In both the experiment and the calculation, greater bushing roughness provides greater lug load-bearing capacity. The ribbed bushings added significant strength in the experiments, which confirmed the importance of considering the tangential mode in the contact model. The presented models can be used for the preliminary evaluation of short fiber-reinforced polyamide-6 parts with titanium-embedded elements bearing capacity. |
---|---|
ISSN: | 2079-3197 2079-3197 |
DOI: | 10.3390/computation12050105 |