Loading…
Hydrological Evaluation of the Groundwater Potential in the Fractured Karoo Aquifer Using Magnetic and Electrical Resistivity Methods: Case Study of the Balfour Formation, Alice, South Africa
The study is aimed at evaluating the groundwater accumulations present in Alice using magnetic and electrical resistivity measurements to examine the trends of structural elements and characterize the groundwater resource for borehole drilling. The magnetic maps show a low magnetic linear structure...
Saved in:
Published in: | International journal of geophysics 2023-09, Vol.2023, p.1-18 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-76a58a47be0097a475f2f8658ab5fbffac04c0c42ce5682accf4d0b7ecbff0913 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-76a58a47be0097a475f2f8658ab5fbffac04c0c42ce5682accf4d0b7ecbff0913 |
container_end_page | 18 |
container_issue | |
container_start_page | 1 |
container_title | International journal of geophysics |
container_volume | 2023 |
creator | Adesola, Gbenga Olamide Gwavava, Oswald Liu, Kuiwu |
description | The study is aimed at evaluating the groundwater accumulations present in Alice using magnetic and electrical resistivity measurements to examine the trends of structural elements and characterize the groundwater resource for borehole drilling. The magnetic maps show a low magnetic linear structure moving northwest to southeast direction, which may be caused by fractures. The linear high intensities were probably caused by dolerite dykes, while dolerite sills caused broader high-intensity areas. The depth slices show that the near-surface magnetic structures are visible to a depth of about 19 m, and the deep-seated structures are found at a depth of about 31 m, possibly deeper. Twenty-five vertical electrical soundings (VES) of the Schlumberger array were measured with AB/2 varying between 1.5 m and 250 m across the study area. The VES interpretation showed four geoelectric layers composed of HK and HA curve types. The geoelectric layer’s thicknesses are (1) topsoil from 0.4 to 1.8 m, (2) weathered layer from 0.8 to 17.5 m, and (3) weathered/fractured layer from 9.9 to 143.9 m; the third layer could be the productive water-bearing zones, and (4) bedrock layer has an infinite thickness. The layers have resistivity values of 20-5752 Ωm, 3-51 Ωm, 136-352 Ωm, and 44-60428 Ωm, respectively. A correlation of the VES with the borehole log indicated a well-matched result. The magnetic and electrical resistivity surveys provided a detailed subsurface structure and helped identify possible fractures that could act as a passage for groundwater. |
doi_str_mv | 10.1155/2023/1891759 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a3de6c5a39124224801a6c0514359bf2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a3de6c5a39124224801a6c0514359bf2</doaj_id><sourcerecordid>2865667145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-76a58a47be0097a475f2f8658ab5fbffac04c0c42ce5682accf4d0b7ecbff0913</originalsourceid><addsrcrecordid>eNp9kc9OGzEQxldVKxVRbn0ASz02Adtre3d7S6MEEKBWpUi9WbP-kzhabLC9oDxdXw0noRzri0czP33zjb6q-kzwKSGcn1FM6zPSdqTh3bvqiIi2mbataN-_1fzPx-okpQ0ur-5og-uj6u_FVscwhJVTMKDFEwwjZBc8ChbltUHnMYxeP0M2Ef0M2fjsCuf8friMoPIYjUZXEENAs8fR2QLeJedX6AZW3mSnEHiNFoNROe6X_DLJpeyeXN6iG5PXQadvaA7JoNs86u2_zd9hsGGMaBni_d7SBM0Gp8wE3YYxr9HM7uQ-VR8sDMmcvP7H1d1y8Xt-Mb3-cX45n11PFWtwnjYCeAus6Q3GXVMKbqltRen13PbWgsJMYcWoMly0FJSyTOO-MaoMcUfq4-ryoKsDbORDdPcQtzKAk_tGiCsJsRw7GAm1NkJxqDtCGaWsxQSEwpywmne9pUXry0HrIYbH0aQsN-VQX-xLWjwJ0RDGCzU5UCqGlKKxb1sJlrvE5S5x-Zp4wb8e8LXzGp7d_-kX8pytaw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865667145</pqid></control><display><type>article</type><title>Hydrological Evaluation of the Groundwater Potential in the Fractured Karoo Aquifer Using Magnetic and Electrical Resistivity Methods: Case Study of the Balfour Formation, Alice, South Africa</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Adesola, Gbenga Olamide ; Gwavava, Oswald ; Liu, Kuiwu</creator><contributor>Szalai, Sándor ; Sándor Szalai</contributor><creatorcontrib>Adesola, Gbenga Olamide ; Gwavava, Oswald ; Liu, Kuiwu ; Szalai, Sándor ; Sándor Szalai</creatorcontrib><description>The study is aimed at evaluating the groundwater accumulations present in Alice using magnetic and electrical resistivity measurements to examine the trends of structural elements and characterize the groundwater resource for borehole drilling. The magnetic maps show a low magnetic linear structure moving northwest to southeast direction, which may be caused by fractures. The linear high intensities were probably caused by dolerite dykes, while dolerite sills caused broader high-intensity areas. The depth slices show that the near-surface magnetic structures are visible to a depth of about 19 m, and the deep-seated structures are found at a depth of about 31 m, possibly deeper. Twenty-five vertical electrical soundings (VES) of the Schlumberger array were measured with AB/2 varying between 1.5 m and 250 m across the study area. The VES interpretation showed four geoelectric layers composed of HK and HA curve types. The geoelectric layer’s thicknesses are (1) topsoil from 0.4 to 1.8 m, (2) weathered layer from 0.8 to 17.5 m, and (3) weathered/fractured layer from 9.9 to 143.9 m; the third layer could be the productive water-bearing zones, and (4) bedrock layer has an infinite thickness. The layers have resistivity values of 20-5752 Ωm, 3-51 Ωm, 136-352 Ωm, and 44-60428 Ωm, respectively. A correlation of the VES with the borehole log indicated a well-matched result. The magnetic and electrical resistivity surveys provided a detailed subsurface structure and helped identify possible fractures that could act as a passage for groundwater.</description><identifier>ISSN: 1687-885X</identifier><identifier>EISSN: 1687-8868</identifier><identifier>DOI: 10.1155/2023/1891759</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Aquifers ; Bedrock ; Boreholes ; Depth ; Drilling ; Drinking water ; Electrical resistivity ; Evaluation ; Fractures ; Geoelectricity ; Geology ; Groundwater ; Groundwater potential ; Groundwater resources ; Hydrology ; Investigations ; Lithology ; Rural areas ; Sills ; Soundings ; Structural members ; Surface water ; Thickness ; Topsoil ; Water resources ; Water shortages ; Water supply</subject><ispartof>International journal of geophysics, 2023-09, Vol.2023, p.1-18</ispartof><rights>Copyright © 2023 Gbenga Olamide Adesola et al.</rights><rights>Copyright © 2023 Gbenga Olamide Adesola et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-76a58a47be0097a475f2f8658ab5fbffac04c0c42ce5682accf4d0b7ecbff0913</citedby><cites>FETCH-LOGICAL-c470t-76a58a47be0097a475f2f8658ab5fbffac04c0c42ce5682accf4d0b7ecbff0913</cites><orcidid>0000-0002-6398-7805 ; 0000-0002-4151-5305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2865667145/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2865667145?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25736,27907,27908,36995,44573,74877</link.rule.ids></links><search><contributor>Szalai, Sándor</contributor><contributor>Sándor Szalai</contributor><creatorcontrib>Adesola, Gbenga Olamide</creatorcontrib><creatorcontrib>Gwavava, Oswald</creatorcontrib><creatorcontrib>Liu, Kuiwu</creatorcontrib><title>Hydrological Evaluation of the Groundwater Potential in the Fractured Karoo Aquifer Using Magnetic and Electrical Resistivity Methods: Case Study of the Balfour Formation, Alice, South Africa</title><title>International journal of geophysics</title><description>The study is aimed at evaluating the groundwater accumulations present in Alice using magnetic and electrical resistivity measurements to examine the trends of structural elements and characterize the groundwater resource for borehole drilling. The magnetic maps show a low magnetic linear structure moving northwest to southeast direction, which may be caused by fractures. The linear high intensities were probably caused by dolerite dykes, while dolerite sills caused broader high-intensity areas. The depth slices show that the near-surface magnetic structures are visible to a depth of about 19 m, and the deep-seated structures are found at a depth of about 31 m, possibly deeper. Twenty-five vertical electrical soundings (VES) of the Schlumberger array were measured with AB/2 varying between 1.5 m and 250 m across the study area. The VES interpretation showed four geoelectric layers composed of HK and HA curve types. The geoelectric layer’s thicknesses are (1) topsoil from 0.4 to 1.8 m, (2) weathered layer from 0.8 to 17.5 m, and (3) weathered/fractured layer from 9.9 to 143.9 m; the third layer could be the productive water-bearing zones, and (4) bedrock layer has an infinite thickness. The layers have resistivity values of 20-5752 Ωm, 3-51 Ωm, 136-352 Ωm, and 44-60428 Ωm, respectively. A correlation of the VES with the borehole log indicated a well-matched result. The magnetic and electrical resistivity surveys provided a detailed subsurface structure and helped identify possible fractures that could act as a passage for groundwater.</description><subject>Aquifers</subject><subject>Bedrock</subject><subject>Boreholes</subject><subject>Depth</subject><subject>Drilling</subject><subject>Drinking water</subject><subject>Electrical resistivity</subject><subject>Evaluation</subject><subject>Fractures</subject><subject>Geoelectricity</subject><subject>Geology</subject><subject>Groundwater</subject><subject>Groundwater potential</subject><subject>Groundwater resources</subject><subject>Hydrology</subject><subject>Investigations</subject><subject>Lithology</subject><subject>Rural areas</subject><subject>Sills</subject><subject>Soundings</subject><subject>Structural members</subject><subject>Surface water</subject><subject>Thickness</subject><subject>Topsoil</subject><subject>Water resources</subject><subject>Water shortages</subject><subject>Water supply</subject><issn>1687-885X</issn><issn>1687-8868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc9OGzEQxldVKxVRbn0ASz02Adtre3d7S6MEEKBWpUi9WbP-kzhabLC9oDxdXw0noRzri0czP33zjb6q-kzwKSGcn1FM6zPSdqTh3bvqiIi2mbataN-_1fzPx-okpQ0ur-5og-uj6u_FVscwhJVTMKDFEwwjZBc8ChbltUHnMYxeP0M2Ef0M2fjsCuf8friMoPIYjUZXEENAs8fR2QLeJedX6AZW3mSnEHiNFoNROe6X_DLJpeyeXN6iG5PXQadvaA7JoNs86u2_zd9hsGGMaBni_d7SBM0Gp8wE3YYxr9HM7uQ-VR8sDMmcvP7H1d1y8Xt-Mb3-cX45n11PFWtwnjYCeAus6Q3GXVMKbqltRen13PbWgsJMYcWoMly0FJSyTOO-MaoMcUfq4-ryoKsDbORDdPcQtzKAk_tGiCsJsRw7GAm1NkJxqDtCGaWsxQSEwpywmne9pUXry0HrIYbH0aQsN-VQX-xLWjwJ0RDGCzU5UCqGlKKxb1sJlrvE5S5x-Zp4wb8e8LXzGp7d_-kX8pytaw</recordid><startdate>20230906</startdate><enddate>20230906</enddate><creator>Adesola, Gbenga Olamide</creator><creator>Gwavava, Oswald</creator><creator>Liu, Kuiwu</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6398-7805</orcidid><orcidid>https://orcid.org/0000-0002-4151-5305</orcidid></search><sort><creationdate>20230906</creationdate><title>Hydrological Evaluation of the Groundwater Potential in the Fractured Karoo Aquifer Using Magnetic and Electrical Resistivity Methods: Case Study of the Balfour Formation, Alice, South Africa</title><author>Adesola, Gbenga Olamide ; Gwavava, Oswald ; Liu, Kuiwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-76a58a47be0097a475f2f8658ab5fbffac04c0c42ce5682accf4d0b7ecbff0913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aquifers</topic><topic>Bedrock</topic><topic>Boreholes</topic><topic>Depth</topic><topic>Drilling</topic><topic>Drinking water</topic><topic>Electrical resistivity</topic><topic>Evaluation</topic><topic>Fractures</topic><topic>Geoelectricity</topic><topic>Geology</topic><topic>Groundwater</topic><topic>Groundwater potential</topic><topic>Groundwater resources</topic><topic>Hydrology</topic><topic>Investigations</topic><topic>Lithology</topic><topic>Rural areas</topic><topic>Sills</topic><topic>Soundings</topic><topic>Structural members</topic><topic>Surface water</topic><topic>Thickness</topic><topic>Topsoil</topic><topic>Water resources</topic><topic>Water shortages</topic><topic>Water supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adesola, Gbenga Olamide</creatorcontrib><creatorcontrib>Gwavava, Oswald</creatorcontrib><creatorcontrib>Liu, Kuiwu</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adesola, Gbenga Olamide</au><au>Gwavava, Oswald</au><au>Liu, Kuiwu</au><au>Szalai, Sándor</au><au>Sándor Szalai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrological Evaluation of the Groundwater Potential in the Fractured Karoo Aquifer Using Magnetic and Electrical Resistivity Methods: Case Study of the Balfour Formation, Alice, South Africa</atitle><jtitle>International journal of geophysics</jtitle><date>2023-09-06</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1687-885X</issn><eissn>1687-8868</eissn><abstract>The study is aimed at evaluating the groundwater accumulations present in Alice using magnetic and electrical resistivity measurements to examine the trends of structural elements and characterize the groundwater resource for borehole drilling. The magnetic maps show a low magnetic linear structure moving northwest to southeast direction, which may be caused by fractures. The linear high intensities were probably caused by dolerite dykes, while dolerite sills caused broader high-intensity areas. The depth slices show that the near-surface magnetic structures are visible to a depth of about 19 m, and the deep-seated structures are found at a depth of about 31 m, possibly deeper. Twenty-five vertical electrical soundings (VES) of the Schlumberger array were measured with AB/2 varying between 1.5 m and 250 m across the study area. The VES interpretation showed four geoelectric layers composed of HK and HA curve types. The geoelectric layer’s thicknesses are (1) topsoil from 0.4 to 1.8 m, (2) weathered layer from 0.8 to 17.5 m, and (3) weathered/fractured layer from 9.9 to 143.9 m; the third layer could be the productive water-bearing zones, and (4) bedrock layer has an infinite thickness. The layers have resistivity values of 20-5752 Ωm, 3-51 Ωm, 136-352 Ωm, and 44-60428 Ωm, respectively. A correlation of the VES with the borehole log indicated a well-matched result. The magnetic and electrical resistivity surveys provided a detailed subsurface structure and helped identify possible fractures that could act as a passage for groundwater.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2023/1891759</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6398-7805</orcidid><orcidid>https://orcid.org/0000-0002-4151-5305</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-885X |
ispartof | International journal of geophysics, 2023-09, Vol.2023, p.1-18 |
issn | 1687-885X 1687-8868 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a3de6c5a39124224801a6c0514359bf2 |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Aquifers Bedrock Boreholes Depth Drilling Drinking water Electrical resistivity Evaluation Fractures Geoelectricity Geology Groundwater Groundwater potential Groundwater resources Hydrology Investigations Lithology Rural areas Sills Soundings Structural members Surface water Thickness Topsoil Water resources Water shortages Water supply |
title | Hydrological Evaluation of the Groundwater Potential in the Fractured Karoo Aquifer Using Magnetic and Electrical Resistivity Methods: Case Study of the Balfour Formation, Alice, South Africa |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrological%20Evaluation%20of%20the%20Groundwater%20Potential%20in%20the%20Fractured%20Karoo%20Aquifer%20Using%20Magnetic%20and%20Electrical%20Resistivity%20Methods:%20Case%20Study%20of%20the%20Balfour%20Formation,%20Alice,%20South%20Africa&rft.jtitle=International%20journal%20of%20geophysics&rft.au=Adesola,%20Gbenga%20Olamide&rft.date=2023-09-06&rft.volume=2023&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1687-885X&rft.eissn=1687-8868&rft_id=info:doi/10.1155/2023/1891759&rft_dat=%3Cproquest_doaj_%3E2865667145%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-76a58a47be0097a475f2f8658ab5fbffac04c0c42ce5682accf4d0b7ecbff0913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2865667145&rft_id=info:pmid/&rfr_iscdi=true |