Loading…

Hydrological Evaluation of the Groundwater Potential in the Fractured Karoo Aquifer Using Magnetic and Electrical Resistivity Methods: Case Study of the Balfour Formation, Alice, South Africa

The study is aimed at evaluating the groundwater accumulations present in Alice using magnetic and electrical resistivity measurements to examine the trends of structural elements and characterize the groundwater resource for borehole drilling. The magnetic maps show a low magnetic linear structure...

Full description

Saved in:
Bibliographic Details
Published in:International journal of geophysics 2023-09, Vol.2023, p.1-18
Main Authors: Adesola, Gbenga Olamide, Gwavava, Oswald, Liu, Kuiwu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-76a58a47be0097a475f2f8658ab5fbffac04c0c42ce5682accf4d0b7ecbff0913
cites cdi_FETCH-LOGICAL-c470t-76a58a47be0097a475f2f8658ab5fbffac04c0c42ce5682accf4d0b7ecbff0913
container_end_page 18
container_issue
container_start_page 1
container_title International journal of geophysics
container_volume 2023
creator Adesola, Gbenga Olamide
Gwavava, Oswald
Liu, Kuiwu
description The study is aimed at evaluating the groundwater accumulations present in Alice using magnetic and electrical resistivity measurements to examine the trends of structural elements and characterize the groundwater resource for borehole drilling. The magnetic maps show a low magnetic linear structure moving northwest to southeast direction, which may be caused by fractures. The linear high intensities were probably caused by dolerite dykes, while dolerite sills caused broader high-intensity areas. The depth slices show that the near-surface magnetic structures are visible to a depth of about 19 m, and the deep-seated structures are found at a depth of about 31 m, possibly deeper. Twenty-five vertical electrical soundings (VES) of the Schlumberger array were measured with AB/2 varying between 1.5 m and 250 m across the study area. The VES interpretation showed four geoelectric layers composed of HK and HA curve types. The geoelectric layer’s thicknesses are (1) topsoil from 0.4 to 1.8 m, (2) weathered layer from 0.8 to 17.5 m, and (3) weathered/fractured layer from 9.9 to 143.9 m; the third layer could be the productive water-bearing zones, and (4) bedrock layer has an infinite thickness. The layers have resistivity values of 20-5752 Ωm, 3-51 Ωm, 136-352 Ωm, and 44-60428 Ωm, respectively. A correlation of the VES with the borehole log indicated a well-matched result. The magnetic and electrical resistivity surveys provided a detailed subsurface structure and helped identify possible fractures that could act as a passage for groundwater.
doi_str_mv 10.1155/2023/1891759
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a3de6c5a39124224801a6c0514359bf2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a3de6c5a39124224801a6c0514359bf2</doaj_id><sourcerecordid>2865667145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-76a58a47be0097a475f2f8658ab5fbffac04c0c42ce5682accf4d0b7ecbff0913</originalsourceid><addsrcrecordid>eNp9kc9OGzEQxldVKxVRbn0ASz02Adtre3d7S6MEEKBWpUi9WbP-kzhabLC9oDxdXw0noRzri0czP33zjb6q-kzwKSGcn1FM6zPSdqTh3bvqiIi2mbataN-_1fzPx-okpQ0ur-5og-uj6u_FVscwhJVTMKDFEwwjZBc8ChbltUHnMYxeP0M2Ef0M2fjsCuf8friMoPIYjUZXEENAs8fR2QLeJedX6AZW3mSnEHiNFoNROe6X_DLJpeyeXN6iG5PXQadvaA7JoNs86u2_zd9hsGGMaBni_d7SBM0Gp8wE3YYxr9HM7uQ-VR8sDMmcvP7H1d1y8Xt-Mb3-cX45n11PFWtwnjYCeAus6Q3GXVMKbqltRen13PbWgsJMYcWoMly0FJSyTOO-MaoMcUfq4-ryoKsDbORDdPcQtzKAk_tGiCsJsRw7GAm1NkJxqDtCGaWsxQSEwpywmne9pUXry0HrIYbH0aQsN-VQX-xLWjwJ0RDGCzU5UCqGlKKxb1sJlrvE5S5x-Zp4wb8e8LXzGp7d_-kX8pytaw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865667145</pqid></control><display><type>article</type><title>Hydrological Evaluation of the Groundwater Potential in the Fractured Karoo Aquifer Using Magnetic and Electrical Resistivity Methods: Case Study of the Balfour Formation, Alice, South Africa</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Adesola, Gbenga Olamide ; Gwavava, Oswald ; Liu, Kuiwu</creator><contributor>Szalai, Sándor ; Sándor Szalai</contributor><creatorcontrib>Adesola, Gbenga Olamide ; Gwavava, Oswald ; Liu, Kuiwu ; Szalai, Sándor ; Sándor Szalai</creatorcontrib><description>The study is aimed at evaluating the groundwater accumulations present in Alice using magnetic and electrical resistivity measurements to examine the trends of structural elements and characterize the groundwater resource for borehole drilling. The magnetic maps show a low magnetic linear structure moving northwest to southeast direction, which may be caused by fractures. The linear high intensities were probably caused by dolerite dykes, while dolerite sills caused broader high-intensity areas. The depth slices show that the near-surface magnetic structures are visible to a depth of about 19 m, and the deep-seated structures are found at a depth of about 31 m, possibly deeper. Twenty-five vertical electrical soundings (VES) of the Schlumberger array were measured with AB/2 varying between 1.5 m and 250 m across the study area. The VES interpretation showed four geoelectric layers composed of HK and HA curve types. The geoelectric layer’s thicknesses are (1) topsoil from 0.4 to 1.8 m, (2) weathered layer from 0.8 to 17.5 m, and (3) weathered/fractured layer from 9.9 to 143.9 m; the third layer could be the productive water-bearing zones, and (4) bedrock layer has an infinite thickness. The layers have resistivity values of 20-5752 Ωm, 3-51 Ωm, 136-352 Ωm, and 44-60428 Ωm, respectively. A correlation of the VES with the borehole log indicated a well-matched result. The magnetic and electrical resistivity surveys provided a detailed subsurface structure and helped identify possible fractures that could act as a passage for groundwater.</description><identifier>ISSN: 1687-885X</identifier><identifier>EISSN: 1687-8868</identifier><identifier>DOI: 10.1155/2023/1891759</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Aquifers ; Bedrock ; Boreholes ; Depth ; Drilling ; Drinking water ; Electrical resistivity ; Evaluation ; Fractures ; Geoelectricity ; Geology ; Groundwater ; Groundwater potential ; Groundwater resources ; Hydrology ; Investigations ; Lithology ; Rural areas ; Sills ; Soundings ; Structural members ; Surface water ; Thickness ; Topsoil ; Water resources ; Water shortages ; Water supply</subject><ispartof>International journal of geophysics, 2023-09, Vol.2023, p.1-18</ispartof><rights>Copyright © 2023 Gbenga Olamide Adesola et al.</rights><rights>Copyright © 2023 Gbenga Olamide Adesola et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-76a58a47be0097a475f2f8658ab5fbffac04c0c42ce5682accf4d0b7ecbff0913</citedby><cites>FETCH-LOGICAL-c470t-76a58a47be0097a475f2f8658ab5fbffac04c0c42ce5682accf4d0b7ecbff0913</cites><orcidid>0000-0002-6398-7805 ; 0000-0002-4151-5305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2865667145/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2865667145?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25736,27907,27908,36995,44573,74877</link.rule.ids></links><search><contributor>Szalai, Sándor</contributor><contributor>Sándor Szalai</contributor><creatorcontrib>Adesola, Gbenga Olamide</creatorcontrib><creatorcontrib>Gwavava, Oswald</creatorcontrib><creatorcontrib>Liu, Kuiwu</creatorcontrib><title>Hydrological Evaluation of the Groundwater Potential in the Fractured Karoo Aquifer Using Magnetic and Electrical Resistivity Methods: Case Study of the Balfour Formation, Alice, South Africa</title><title>International journal of geophysics</title><description>The study is aimed at evaluating the groundwater accumulations present in Alice using magnetic and electrical resistivity measurements to examine the trends of structural elements and characterize the groundwater resource for borehole drilling. The magnetic maps show a low magnetic linear structure moving northwest to southeast direction, which may be caused by fractures. The linear high intensities were probably caused by dolerite dykes, while dolerite sills caused broader high-intensity areas. The depth slices show that the near-surface magnetic structures are visible to a depth of about 19 m, and the deep-seated structures are found at a depth of about 31 m, possibly deeper. Twenty-five vertical electrical soundings (VES) of the Schlumberger array were measured with AB/2 varying between 1.5 m and 250 m across the study area. The VES interpretation showed four geoelectric layers composed of HK and HA curve types. The geoelectric layer’s thicknesses are (1) topsoil from 0.4 to 1.8 m, (2) weathered layer from 0.8 to 17.5 m, and (3) weathered/fractured layer from 9.9 to 143.9 m; the third layer could be the productive water-bearing zones, and (4) bedrock layer has an infinite thickness. The layers have resistivity values of 20-5752 Ωm, 3-51 Ωm, 136-352 Ωm, and 44-60428 Ωm, respectively. A correlation of the VES with the borehole log indicated a well-matched result. The magnetic and electrical resistivity surveys provided a detailed subsurface structure and helped identify possible fractures that could act as a passage for groundwater.</description><subject>Aquifers</subject><subject>Bedrock</subject><subject>Boreholes</subject><subject>Depth</subject><subject>Drilling</subject><subject>Drinking water</subject><subject>Electrical resistivity</subject><subject>Evaluation</subject><subject>Fractures</subject><subject>Geoelectricity</subject><subject>Geology</subject><subject>Groundwater</subject><subject>Groundwater potential</subject><subject>Groundwater resources</subject><subject>Hydrology</subject><subject>Investigations</subject><subject>Lithology</subject><subject>Rural areas</subject><subject>Sills</subject><subject>Soundings</subject><subject>Structural members</subject><subject>Surface water</subject><subject>Thickness</subject><subject>Topsoil</subject><subject>Water resources</subject><subject>Water shortages</subject><subject>Water supply</subject><issn>1687-885X</issn><issn>1687-8868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc9OGzEQxldVKxVRbn0ASz02Adtre3d7S6MEEKBWpUi9WbP-kzhabLC9oDxdXw0noRzri0czP33zjb6q-kzwKSGcn1FM6zPSdqTh3bvqiIi2mbataN-_1fzPx-okpQ0ur-5og-uj6u_FVscwhJVTMKDFEwwjZBc8ChbltUHnMYxeP0M2Ef0M2fjsCuf8friMoPIYjUZXEENAs8fR2QLeJedX6AZW3mSnEHiNFoNROe6X_DLJpeyeXN6iG5PXQadvaA7JoNs86u2_zd9hsGGMaBni_d7SBM0Gp8wE3YYxr9HM7uQ-VR8sDMmcvP7H1d1y8Xt-Mb3-cX45n11PFWtwnjYCeAus6Q3GXVMKbqltRen13PbWgsJMYcWoMly0FJSyTOO-MaoMcUfq4-ryoKsDbORDdPcQtzKAk_tGiCsJsRw7GAm1NkJxqDtCGaWsxQSEwpywmne9pUXry0HrIYbH0aQsN-VQX-xLWjwJ0RDGCzU5UCqGlKKxb1sJlrvE5S5x-Zp4wb8e8LXzGp7d_-kX8pytaw</recordid><startdate>20230906</startdate><enddate>20230906</enddate><creator>Adesola, Gbenga Olamide</creator><creator>Gwavava, Oswald</creator><creator>Liu, Kuiwu</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6398-7805</orcidid><orcidid>https://orcid.org/0000-0002-4151-5305</orcidid></search><sort><creationdate>20230906</creationdate><title>Hydrological Evaluation of the Groundwater Potential in the Fractured Karoo Aquifer Using Magnetic and Electrical Resistivity Methods: Case Study of the Balfour Formation, Alice, South Africa</title><author>Adesola, Gbenga Olamide ; Gwavava, Oswald ; Liu, Kuiwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-76a58a47be0097a475f2f8658ab5fbffac04c0c42ce5682accf4d0b7ecbff0913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aquifers</topic><topic>Bedrock</topic><topic>Boreholes</topic><topic>Depth</topic><topic>Drilling</topic><topic>Drinking water</topic><topic>Electrical resistivity</topic><topic>Evaluation</topic><topic>Fractures</topic><topic>Geoelectricity</topic><topic>Geology</topic><topic>Groundwater</topic><topic>Groundwater potential</topic><topic>Groundwater resources</topic><topic>Hydrology</topic><topic>Investigations</topic><topic>Lithology</topic><topic>Rural areas</topic><topic>Sills</topic><topic>Soundings</topic><topic>Structural members</topic><topic>Surface water</topic><topic>Thickness</topic><topic>Topsoil</topic><topic>Water resources</topic><topic>Water shortages</topic><topic>Water supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adesola, Gbenga Olamide</creatorcontrib><creatorcontrib>Gwavava, Oswald</creatorcontrib><creatorcontrib>Liu, Kuiwu</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adesola, Gbenga Olamide</au><au>Gwavava, Oswald</au><au>Liu, Kuiwu</au><au>Szalai, Sándor</au><au>Sándor Szalai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrological Evaluation of the Groundwater Potential in the Fractured Karoo Aquifer Using Magnetic and Electrical Resistivity Methods: Case Study of the Balfour Formation, Alice, South Africa</atitle><jtitle>International journal of geophysics</jtitle><date>2023-09-06</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1687-885X</issn><eissn>1687-8868</eissn><abstract>The study is aimed at evaluating the groundwater accumulations present in Alice using magnetic and electrical resistivity measurements to examine the trends of structural elements and characterize the groundwater resource for borehole drilling. The magnetic maps show a low magnetic linear structure moving northwest to southeast direction, which may be caused by fractures. The linear high intensities were probably caused by dolerite dykes, while dolerite sills caused broader high-intensity areas. The depth slices show that the near-surface magnetic structures are visible to a depth of about 19 m, and the deep-seated structures are found at a depth of about 31 m, possibly deeper. Twenty-five vertical electrical soundings (VES) of the Schlumberger array were measured with AB/2 varying between 1.5 m and 250 m across the study area. The VES interpretation showed four geoelectric layers composed of HK and HA curve types. The geoelectric layer’s thicknesses are (1) topsoil from 0.4 to 1.8 m, (2) weathered layer from 0.8 to 17.5 m, and (3) weathered/fractured layer from 9.9 to 143.9 m; the third layer could be the productive water-bearing zones, and (4) bedrock layer has an infinite thickness. The layers have resistivity values of 20-5752 Ωm, 3-51 Ωm, 136-352 Ωm, and 44-60428 Ωm, respectively. A correlation of the VES with the borehole log indicated a well-matched result. The magnetic and electrical resistivity surveys provided a detailed subsurface structure and helped identify possible fractures that could act as a passage for groundwater.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2023/1891759</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6398-7805</orcidid><orcidid>https://orcid.org/0000-0002-4151-5305</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-885X
ispartof International journal of geophysics, 2023-09, Vol.2023, p.1-18
issn 1687-885X
1687-8868
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a3de6c5a39124224801a6c0514359bf2
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Aquifers
Bedrock
Boreholes
Depth
Drilling
Drinking water
Electrical resistivity
Evaluation
Fractures
Geoelectricity
Geology
Groundwater
Groundwater potential
Groundwater resources
Hydrology
Investigations
Lithology
Rural areas
Sills
Soundings
Structural members
Surface water
Thickness
Topsoil
Water resources
Water shortages
Water supply
title Hydrological Evaluation of the Groundwater Potential in the Fractured Karoo Aquifer Using Magnetic and Electrical Resistivity Methods: Case Study of the Balfour Formation, Alice, South Africa
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrological%20Evaluation%20of%20the%20Groundwater%20Potential%20in%20the%20Fractured%20Karoo%20Aquifer%20Using%20Magnetic%20and%20Electrical%20Resistivity%20Methods:%20Case%20Study%20of%20the%20Balfour%20Formation,%20Alice,%20South%20Africa&rft.jtitle=International%20journal%20of%20geophysics&rft.au=Adesola,%20Gbenga%20Olamide&rft.date=2023-09-06&rft.volume=2023&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1687-885X&rft.eissn=1687-8868&rft_id=info:doi/10.1155/2023/1891759&rft_dat=%3Cproquest_doaj_%3E2865667145%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-76a58a47be0097a475f2f8658ab5fbffac04c0c42ce5682accf4d0b7ecbff0913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2865667145&rft_id=info:pmid/&rfr_iscdi=true