Loading…

A REVIEW ON SPATIAL QUALITY ASSESSMENT METHODS FOR EVALUATION OF PAN-SHARPENED SATELLITE IMAGERY

Nowadays, high-resolution fused satellite imagery is widely used in multiple remote sensing applications. Although the spectral quality of pan-sharpened images plays an important role in many applications, spatial quality becomes more important in numerous cases. The high spatial quality of the fuse...

Full description

Saved in:
Bibliographic Details
Main Authors: Dadras Javan, F., Samadzadegan, F., Mehravar, S., Toosi, A.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nowadays, high-resolution fused satellite imagery is widely used in multiple remote sensing applications. Although the spectral quality of pan-sharpened images plays an important role in many applications, spatial quality becomes more important in numerous cases. The high spatial quality of the fused image is essential for extraction, identification and reconstruction of significant image objects, and will result in producing high-quality large scale maps especially in the urban areas. This paper introduces the most sensitive and effective methods in detecting the spatial distortion of fused images by implementing a number of spatial quality assessment indices that are utilized in the field of remote sensing and image processing. In this regard, in order to recognize the ability of quality assessment indices for detecting the spatial distortion quantity of fused images, input images of the fusion process are affected by some intentional spatial distortions based on non-registration error. The capabilities of the investigated metrics are evaluated on four different fused images derived from Ikonos and WorldView-2 initial images. Achieved results obviously explicate that two methods namely Edge Variance Distortion and the spatial component of QNR metric called Ds are more sensitive and responsive to the imported errors.
ISSN:2194-9034
1682-1750
2194-9034
DOI:10.5194/isprs-archives-XLII-4-W18-255-2019