Loading…
Nonsingular Integral Sliding Mode Attitude Control for Rigid-Flexible Coupled Spacecraft with High-Inertia Rotating Appendages
This study addresses the challenge of attitude tracking control for a rigid-flexible spacecraft with high-inertia rotating appendages. The Lagrange method was used to establish the kinematic and dynamic models of the spacecraft. The translation and rotation of the spacecraft, vibrations of solar pan...
Saved in:
Published in: | Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-b7386e44474060a3a4db20fa7216f082b387eeffe46acfc6abb4390c10c399e73 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-b7386e44474060a3a4db20fa7216f082b387eeffe46acfc6abb4390c10c399e73 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Complexity (New York, N.Y.) |
container_volume | 2021 |
creator | Zhang, Gaowang Chen, Xueqin Xi, Ruichen Li, Huayi |
description | This study addresses the challenge of attitude tracking control for a rigid-flexible spacecraft with high-inertia rotating appendages. The Lagrange method was used to establish the kinematic and dynamic models of the spacecraft. The translation and rotation of the spacecraft, vibrations of solar panels, and imbalance caused by the rotating appendages, which cause a complex control problem, were considered. To address the complex control problem, a novel, fast nonsingular integral sliding mode control method is proposed to perform the attitude tracking function of spacecraft. A sliding mode control law was established for the high-inertia appendages to maintain an appropriate angular velocity during rotation. Finally, the effectiveness of the proposed attitude control law was verified by numerical simulations for a spacecraft with high-inertia rotating appendages and symmetrical flexible solar panels. |
doi_str_mv | 10.1155/2021/8812187 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a3fb076542ba4c56b854ae81f2871b0b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a3fb076542ba4c56b854ae81f2871b0b</doaj_id><sourcerecordid>2494042422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-b7386e44474060a3a4db20fa7216f082b387eeffe46acfc6abb4390c10c399e73</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEEqVw4wNY4gih_hfbOa5WlK5UQGrhbI0dO-uViYPjqHDhs-OwFUdOM5r56c3TvKZ5TfB7QrruimJKrpQilCj5pLkguO9b3FHxdOulaKlU8nnzYllOGONeMHnR_P6cpiVM4xoho8NU3JghovsYhjpEn9Lg0K6UUNba7NNUcorIp4zuwhiG9jq6n8HEbbXO0Q3ofgbrbAZf0EMoR3QTxmN7mFwuAdBdKlA22d08u2mA0S0vm2ce4uJePdbL5tv1h6_7m_b2y8fDfnfbWo5ZaY1kSjjOueRYYGDAB0OxB0mJ8FhRw5R0znvHBVhvBRjDWY8twZb1vZPssjmcdYcEJz3n8B3yL50g6L-DlEcN1aONTgPzpj6r49QAt50wquPgFPFUSWKwqVpvzlpzTj9WtxR9Smueqn1Nec8xp5zSSr07UzanZcnO_7tKsN7S0lta-jGtir8948dQP_MQ_k__ATJ9lLg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494042422</pqid></control><display><type>article</type><title>Nonsingular Integral Sliding Mode Attitude Control for Rigid-Flexible Coupled Spacecraft with High-Inertia Rotating Appendages</title><source>Wiley_OA刊</source><creator>Zhang, Gaowang ; Chen, Xueqin ; Xi, Ruichen ; Li, Huayi</creator><contributor>Wang, Rui ; Rui Wang</contributor><creatorcontrib>Zhang, Gaowang ; Chen, Xueqin ; Xi, Ruichen ; Li, Huayi ; Wang, Rui ; Rui Wang</creatorcontrib><description>This study addresses the challenge of attitude tracking control for a rigid-flexible spacecraft with high-inertia rotating appendages. The Lagrange method was used to establish the kinematic and dynamic models of the spacecraft. The translation and rotation of the spacecraft, vibrations of solar panels, and imbalance caused by the rotating appendages, which cause a complex control problem, were considered. To address the complex control problem, a novel, fast nonsingular integral sliding mode control method is proposed to perform the attitude tracking function of spacecraft. A sliding mode control law was established for the high-inertia appendages to maintain an appropriate angular velocity during rotation. Finally, the effectiveness of the proposed attitude control law was verified by numerical simulations for a spacecraft with high-inertia rotating appendages and symmetrical flexible solar panels.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2021/8812187</identifier><language>eng</language><publisher>Hoboken: Hindawi</publisher><subject>Accuracy ; Angular velocity ; Appendages ; Control algorithms ; Control methods ; Control theory ; Controllers ; Design ; Dynamic models ; Dynamical systems ; Flexible spacecraft ; Inertia ; Integrals ; Methods ; Rotation ; Sliding mode control ; Solar panels ; Spacecraft attitude control ; Spacecraft tracking ; Tracking control</subject><ispartof>Complexity (New York, N.Y.), 2021, Vol.2021 (1)</ispartof><rights>Copyright © 2021 Gaowang Zhang et al.</rights><rights>Copyright © 2021 Gaowang Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-b7386e44474060a3a4db20fa7216f082b387eeffe46acfc6abb4390c10c399e73</citedby><cites>FETCH-LOGICAL-c403t-b7386e44474060a3a4db20fa7216f082b387eeffe46acfc6abb4390c10c399e73</cites><orcidid>0000-0002-5087-8415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Wang, Rui</contributor><contributor>Rui Wang</contributor><creatorcontrib>Zhang, Gaowang</creatorcontrib><creatorcontrib>Chen, Xueqin</creatorcontrib><creatorcontrib>Xi, Ruichen</creatorcontrib><creatorcontrib>Li, Huayi</creatorcontrib><title>Nonsingular Integral Sliding Mode Attitude Control for Rigid-Flexible Coupled Spacecraft with High-Inertia Rotating Appendages</title><title>Complexity (New York, N.Y.)</title><description>This study addresses the challenge of attitude tracking control for a rigid-flexible spacecraft with high-inertia rotating appendages. The Lagrange method was used to establish the kinematic and dynamic models of the spacecraft. The translation and rotation of the spacecraft, vibrations of solar panels, and imbalance caused by the rotating appendages, which cause a complex control problem, were considered. To address the complex control problem, a novel, fast nonsingular integral sliding mode control method is proposed to perform the attitude tracking function of spacecraft. A sliding mode control law was established for the high-inertia appendages to maintain an appropriate angular velocity during rotation. Finally, the effectiveness of the proposed attitude control law was verified by numerical simulations for a spacecraft with high-inertia rotating appendages and symmetrical flexible solar panels.</description><subject>Accuracy</subject><subject>Angular velocity</subject><subject>Appendages</subject><subject>Control algorithms</subject><subject>Control methods</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Design</subject><subject>Dynamic models</subject><subject>Dynamical systems</subject><subject>Flexible spacecraft</subject><subject>Inertia</subject><subject>Integrals</subject><subject>Methods</subject><subject>Rotation</subject><subject>Sliding mode control</subject><subject>Solar panels</subject><subject>Spacecraft attitude control</subject><subject>Spacecraft tracking</subject><subject>Tracking control</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU9v1DAQxSMEEqVw4wNY4gih_hfbOa5WlK5UQGrhbI0dO-uViYPjqHDhs-OwFUdOM5r56c3TvKZ5TfB7QrruimJKrpQilCj5pLkguO9b3FHxdOulaKlU8nnzYllOGONeMHnR_P6cpiVM4xoho8NU3JghovsYhjpEn9Lg0K6UUNba7NNUcorIp4zuwhiG9jq6n8HEbbXO0Q3ofgbrbAZf0EMoR3QTxmN7mFwuAdBdKlA22d08u2mA0S0vm2ce4uJePdbL5tv1h6_7m_b2y8fDfnfbWo5ZaY1kSjjOueRYYGDAB0OxB0mJ8FhRw5R0znvHBVhvBRjDWY8twZb1vZPssjmcdYcEJz3n8B3yL50g6L-DlEcN1aONTgPzpj6r49QAt50wquPgFPFUSWKwqVpvzlpzTj9WtxR9Smueqn1Nec8xp5zSSr07UzanZcnO_7tKsN7S0lta-jGtir8948dQP_MQ_k__ATJ9lLg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhang, Gaowang</creator><creator>Chen, Xueqin</creator><creator>Xi, Ruichen</creator><creator>Li, Huayi</creator><general>Hindawi</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5087-8415</orcidid></search><sort><creationdate>2021</creationdate><title>Nonsingular Integral Sliding Mode Attitude Control for Rigid-Flexible Coupled Spacecraft with High-Inertia Rotating Appendages</title><author>Zhang, Gaowang ; Chen, Xueqin ; Xi, Ruichen ; Li, Huayi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-b7386e44474060a3a4db20fa7216f082b387eeffe46acfc6abb4390c10c399e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Angular velocity</topic><topic>Appendages</topic><topic>Control algorithms</topic><topic>Control methods</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Design</topic><topic>Dynamic models</topic><topic>Dynamical systems</topic><topic>Flexible spacecraft</topic><topic>Inertia</topic><topic>Integrals</topic><topic>Methods</topic><topic>Rotation</topic><topic>Sliding mode control</topic><topic>Solar panels</topic><topic>Spacecraft attitude control</topic><topic>Spacecraft tracking</topic><topic>Tracking control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Gaowang</creatorcontrib><creatorcontrib>Chen, Xueqin</creatorcontrib><creatorcontrib>Xi, Ruichen</creatorcontrib><creatorcontrib>Li, Huayi</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Gaowang</au><au>Chen, Xueqin</au><au>Xi, Ruichen</au><au>Li, Huayi</au><au>Wang, Rui</au><au>Rui Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonsingular Integral Sliding Mode Attitude Control for Rigid-Flexible Coupled Spacecraft with High-Inertia Rotating Appendages</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>This study addresses the challenge of attitude tracking control for a rigid-flexible spacecraft with high-inertia rotating appendages. The Lagrange method was used to establish the kinematic and dynamic models of the spacecraft. The translation and rotation of the spacecraft, vibrations of solar panels, and imbalance caused by the rotating appendages, which cause a complex control problem, were considered. To address the complex control problem, a novel, fast nonsingular integral sliding mode control method is proposed to perform the attitude tracking function of spacecraft. A sliding mode control law was established for the high-inertia appendages to maintain an appropriate angular velocity during rotation. Finally, the effectiveness of the proposed attitude control law was verified by numerical simulations for a spacecraft with high-inertia rotating appendages and symmetrical flexible solar panels.</abstract><cop>Hoboken</cop><pub>Hindawi</pub><doi>10.1155/2021/8812187</doi><orcidid>https://orcid.org/0000-0002-5087-8415</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-2787 |
ispartof | Complexity (New York, N.Y.), 2021, Vol.2021 (1) |
issn | 1076-2787 1099-0526 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a3fb076542ba4c56b854ae81f2871b0b |
source | Wiley_OA刊 |
subjects | Accuracy Angular velocity Appendages Control algorithms Control methods Control theory Controllers Design Dynamic models Dynamical systems Flexible spacecraft Inertia Integrals Methods Rotation Sliding mode control Solar panels Spacecraft attitude control Spacecraft tracking Tracking control |
title | Nonsingular Integral Sliding Mode Attitude Control for Rigid-Flexible Coupled Spacecraft with High-Inertia Rotating Appendages |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonsingular%20Integral%20Sliding%20Mode%20Attitude%20Control%20for%20Rigid-Flexible%20Coupled%20Spacecraft%20with%20High-Inertia%20Rotating%20Appendages&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Zhang,%20Gaowang&rft.date=2021&rft.volume=2021&rft.issue=1&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2021/8812187&rft_dat=%3Cproquest_doaj_%3E2494042422%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-b7386e44474060a3a4db20fa7216f082b387eeffe46acfc6abb4390c10c399e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2494042422&rft_id=info:pmid/&rfr_iscdi=true |