Loading…

Nonsingular Integral Sliding Mode Attitude Control for Rigid-Flexible Coupled Spacecraft with High-Inertia Rotating Appendages

This study addresses the challenge of attitude tracking control for a rigid-flexible spacecraft with high-inertia rotating appendages. The Lagrange method was used to establish the kinematic and dynamic models of the spacecraft. The translation and rotation of the spacecraft, vibrations of solar pan...

Full description

Saved in:
Bibliographic Details
Published in:Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1)
Main Authors: Zhang, Gaowang, Chen, Xueqin, Xi, Ruichen, Li, Huayi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-b7386e44474060a3a4db20fa7216f082b387eeffe46acfc6abb4390c10c399e73
cites cdi_FETCH-LOGICAL-c403t-b7386e44474060a3a4db20fa7216f082b387eeffe46acfc6abb4390c10c399e73
container_end_page
container_issue 1
container_start_page
container_title Complexity (New York, N.Y.)
container_volume 2021
creator Zhang, Gaowang
Chen, Xueqin
Xi, Ruichen
Li, Huayi
description This study addresses the challenge of attitude tracking control for a rigid-flexible spacecraft with high-inertia rotating appendages. The Lagrange method was used to establish the kinematic and dynamic models of the spacecraft. The translation and rotation of the spacecraft, vibrations of solar panels, and imbalance caused by the rotating appendages, which cause a complex control problem, were considered. To address the complex control problem, a novel, fast nonsingular integral sliding mode control method is proposed to perform the attitude tracking function of spacecraft. A sliding mode control law was established for the high-inertia appendages to maintain an appropriate angular velocity during rotation. Finally, the effectiveness of the proposed attitude control law was verified by numerical simulations for a spacecraft with high-inertia rotating appendages and symmetrical flexible solar panels.
doi_str_mv 10.1155/2021/8812187
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a3fb076542ba4c56b854ae81f2871b0b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a3fb076542ba4c56b854ae81f2871b0b</doaj_id><sourcerecordid>2494042422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-b7386e44474060a3a4db20fa7216f082b387eeffe46acfc6abb4390c10c399e73</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEEqVw4wNY4gih_hfbOa5WlK5UQGrhbI0dO-uViYPjqHDhs-OwFUdOM5r56c3TvKZ5TfB7QrruimJKrpQilCj5pLkguO9b3FHxdOulaKlU8nnzYllOGONeMHnR_P6cpiVM4xoho8NU3JghovsYhjpEn9Lg0K6UUNba7NNUcorIp4zuwhiG9jq6n8HEbbXO0Q3ofgbrbAZf0EMoR3QTxmN7mFwuAdBdKlA22d08u2mA0S0vm2ce4uJePdbL5tv1h6_7m_b2y8fDfnfbWo5ZaY1kSjjOueRYYGDAB0OxB0mJ8FhRw5R0znvHBVhvBRjDWY8twZb1vZPssjmcdYcEJz3n8B3yL50g6L-DlEcN1aONTgPzpj6r49QAt50wquPgFPFUSWKwqVpvzlpzTj9WtxR9Smueqn1Nec8xp5zSSr07UzanZcnO_7tKsN7S0lta-jGtir8948dQP_MQ_k__ATJ9lLg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494042422</pqid></control><display><type>article</type><title>Nonsingular Integral Sliding Mode Attitude Control for Rigid-Flexible Coupled Spacecraft with High-Inertia Rotating Appendages</title><source>Wiley_OA刊</source><creator>Zhang, Gaowang ; Chen, Xueqin ; Xi, Ruichen ; Li, Huayi</creator><contributor>Wang, Rui ; Rui Wang</contributor><creatorcontrib>Zhang, Gaowang ; Chen, Xueqin ; Xi, Ruichen ; Li, Huayi ; Wang, Rui ; Rui Wang</creatorcontrib><description>This study addresses the challenge of attitude tracking control for a rigid-flexible spacecraft with high-inertia rotating appendages. The Lagrange method was used to establish the kinematic and dynamic models of the spacecraft. The translation and rotation of the spacecraft, vibrations of solar panels, and imbalance caused by the rotating appendages, which cause a complex control problem, were considered. To address the complex control problem, a novel, fast nonsingular integral sliding mode control method is proposed to perform the attitude tracking function of spacecraft. A sliding mode control law was established for the high-inertia appendages to maintain an appropriate angular velocity during rotation. Finally, the effectiveness of the proposed attitude control law was verified by numerical simulations for a spacecraft with high-inertia rotating appendages and symmetrical flexible solar panels.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2021/8812187</identifier><language>eng</language><publisher>Hoboken: Hindawi</publisher><subject>Accuracy ; Angular velocity ; Appendages ; Control algorithms ; Control methods ; Control theory ; Controllers ; Design ; Dynamic models ; Dynamical systems ; Flexible spacecraft ; Inertia ; Integrals ; Methods ; Rotation ; Sliding mode control ; Solar panels ; Spacecraft attitude control ; Spacecraft tracking ; Tracking control</subject><ispartof>Complexity (New York, N.Y.), 2021, Vol.2021 (1)</ispartof><rights>Copyright © 2021 Gaowang Zhang et al.</rights><rights>Copyright © 2021 Gaowang Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-b7386e44474060a3a4db20fa7216f082b387eeffe46acfc6abb4390c10c399e73</citedby><cites>FETCH-LOGICAL-c403t-b7386e44474060a3a4db20fa7216f082b387eeffe46acfc6abb4390c10c399e73</cites><orcidid>0000-0002-5087-8415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Wang, Rui</contributor><contributor>Rui Wang</contributor><creatorcontrib>Zhang, Gaowang</creatorcontrib><creatorcontrib>Chen, Xueqin</creatorcontrib><creatorcontrib>Xi, Ruichen</creatorcontrib><creatorcontrib>Li, Huayi</creatorcontrib><title>Nonsingular Integral Sliding Mode Attitude Control for Rigid-Flexible Coupled Spacecraft with High-Inertia Rotating Appendages</title><title>Complexity (New York, N.Y.)</title><description>This study addresses the challenge of attitude tracking control for a rigid-flexible spacecraft with high-inertia rotating appendages. The Lagrange method was used to establish the kinematic and dynamic models of the spacecraft. The translation and rotation of the spacecraft, vibrations of solar panels, and imbalance caused by the rotating appendages, which cause a complex control problem, were considered. To address the complex control problem, a novel, fast nonsingular integral sliding mode control method is proposed to perform the attitude tracking function of spacecraft. A sliding mode control law was established for the high-inertia appendages to maintain an appropriate angular velocity during rotation. Finally, the effectiveness of the proposed attitude control law was verified by numerical simulations for a spacecraft with high-inertia rotating appendages and symmetrical flexible solar panels.</description><subject>Accuracy</subject><subject>Angular velocity</subject><subject>Appendages</subject><subject>Control algorithms</subject><subject>Control methods</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Design</subject><subject>Dynamic models</subject><subject>Dynamical systems</subject><subject>Flexible spacecraft</subject><subject>Inertia</subject><subject>Integrals</subject><subject>Methods</subject><subject>Rotation</subject><subject>Sliding mode control</subject><subject>Solar panels</subject><subject>Spacecraft attitude control</subject><subject>Spacecraft tracking</subject><subject>Tracking control</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU9v1DAQxSMEEqVw4wNY4gih_hfbOa5WlK5UQGrhbI0dO-uViYPjqHDhs-OwFUdOM5r56c3TvKZ5TfB7QrruimJKrpQilCj5pLkguO9b3FHxdOulaKlU8nnzYllOGONeMHnR_P6cpiVM4xoho8NU3JghovsYhjpEn9Lg0K6UUNba7NNUcorIp4zuwhiG9jq6n8HEbbXO0Q3ofgbrbAZf0EMoR3QTxmN7mFwuAdBdKlA22d08u2mA0S0vm2ce4uJePdbL5tv1h6_7m_b2y8fDfnfbWo5ZaY1kSjjOueRYYGDAB0OxB0mJ8FhRw5R0znvHBVhvBRjDWY8twZb1vZPssjmcdYcEJz3n8B3yL50g6L-DlEcN1aONTgPzpj6r49QAt50wquPgFPFUSWKwqVpvzlpzTj9WtxR9Smueqn1Nec8xp5zSSr07UzanZcnO_7tKsN7S0lta-jGtir8948dQP_MQ_k__ATJ9lLg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhang, Gaowang</creator><creator>Chen, Xueqin</creator><creator>Xi, Ruichen</creator><creator>Li, Huayi</creator><general>Hindawi</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5087-8415</orcidid></search><sort><creationdate>2021</creationdate><title>Nonsingular Integral Sliding Mode Attitude Control for Rigid-Flexible Coupled Spacecraft with High-Inertia Rotating Appendages</title><author>Zhang, Gaowang ; Chen, Xueqin ; Xi, Ruichen ; Li, Huayi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-b7386e44474060a3a4db20fa7216f082b387eeffe46acfc6abb4390c10c399e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Angular velocity</topic><topic>Appendages</topic><topic>Control algorithms</topic><topic>Control methods</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Design</topic><topic>Dynamic models</topic><topic>Dynamical systems</topic><topic>Flexible spacecraft</topic><topic>Inertia</topic><topic>Integrals</topic><topic>Methods</topic><topic>Rotation</topic><topic>Sliding mode control</topic><topic>Solar panels</topic><topic>Spacecraft attitude control</topic><topic>Spacecraft tracking</topic><topic>Tracking control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Gaowang</creatorcontrib><creatorcontrib>Chen, Xueqin</creatorcontrib><creatorcontrib>Xi, Ruichen</creatorcontrib><creatorcontrib>Li, Huayi</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Gaowang</au><au>Chen, Xueqin</au><au>Xi, Ruichen</au><au>Li, Huayi</au><au>Wang, Rui</au><au>Rui Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonsingular Integral Sliding Mode Attitude Control for Rigid-Flexible Coupled Spacecraft with High-Inertia Rotating Appendages</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>This study addresses the challenge of attitude tracking control for a rigid-flexible spacecraft with high-inertia rotating appendages. The Lagrange method was used to establish the kinematic and dynamic models of the spacecraft. The translation and rotation of the spacecraft, vibrations of solar panels, and imbalance caused by the rotating appendages, which cause a complex control problem, were considered. To address the complex control problem, a novel, fast nonsingular integral sliding mode control method is proposed to perform the attitude tracking function of spacecraft. A sliding mode control law was established for the high-inertia appendages to maintain an appropriate angular velocity during rotation. Finally, the effectiveness of the proposed attitude control law was verified by numerical simulations for a spacecraft with high-inertia rotating appendages and symmetrical flexible solar panels.</abstract><cop>Hoboken</cop><pub>Hindawi</pub><doi>10.1155/2021/8812187</doi><orcidid>https://orcid.org/0000-0002-5087-8415</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-2787
ispartof Complexity (New York, N.Y.), 2021, Vol.2021 (1)
issn 1076-2787
1099-0526
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a3fb076542ba4c56b854ae81f2871b0b
source Wiley_OA刊
subjects Accuracy
Angular velocity
Appendages
Control algorithms
Control methods
Control theory
Controllers
Design
Dynamic models
Dynamical systems
Flexible spacecraft
Inertia
Integrals
Methods
Rotation
Sliding mode control
Solar panels
Spacecraft attitude control
Spacecraft tracking
Tracking control
title Nonsingular Integral Sliding Mode Attitude Control for Rigid-Flexible Coupled Spacecraft with High-Inertia Rotating Appendages
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonsingular%20Integral%20Sliding%20Mode%20Attitude%20Control%20for%20Rigid-Flexible%20Coupled%20Spacecraft%20with%20High-Inertia%20Rotating%20Appendages&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Zhang,%20Gaowang&rft.date=2021&rft.volume=2021&rft.issue=1&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2021/8812187&rft_dat=%3Cproquest_doaj_%3E2494042422%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-b7386e44474060a3a4db20fa7216f082b387eeffe46acfc6abb4390c10c399e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2494042422&rft_id=info:pmid/&rfr_iscdi=true