Loading…

Flux periodic oscillations and phase-coherent transport in GeTe nanowire-based devices

Despite the fact that GeTe is known to be a very interesting material for applications in thermoelectrics and for phase-change memories, the knowledge on its low-temperature transport properties is only limited. We report on phase-coherent phenomena in the magnetotransport of GeTe nanowires. From un...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-02, Vol.12 (1), p.754-754, Article 754
Main Authors: Zhang, Jinzhong, Tse, Pok-Lam, Jalil, Abdur-Rehman, Kölzer, Jonas, Rosenbach, Daniel, Luysberg, Martina, Panaitov, Gregory, Lüth, Hans, Hu, Zhigao, Grützmacher, Detlev, Lu, Jia Grace, Schäpers, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Despite the fact that GeTe is known to be a very interesting material for applications in thermoelectrics and for phase-change memories, the knowledge on its low-temperature transport properties is only limited. We report on phase-coherent phenomena in the magnetotransport of GeTe nanowires. From universal conductance fluctuations measured on GeTe nanowires with Au contacts, a phase-coherence length of about 280 nm at 0.5 K is determined. The distinct phase-coherence is confirmed by the observation of Aharonov–Bohm type oscillations for parallel magnetic fields. We interpret the occurrence of these magnetic flux-periodic oscillations by the formation of a tubular hole accumulation layer. For Nb/GeTe-nanowire/Nb Josephson junctions we obtained a critical current of 0.2  μ A at 0.4 K. By applying a perpendicular magnetic field the critical current decreases monotonously with increasing field, whereas in a parallel field the critical current oscillates with a period of the magnetic flux quantum confirming the presence of a tubular hole channel. A deep understanding of low-temperature transport properties of GeTe material remains a challenge. Here, the authors investigate phase-coherent phenomena in GeTe nanowire structures where the occurrence of magnetic flux-periodic oscillations come from the formation of a tubular hole accumulation layer.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-21042-5