Loading…

Alterations of the gut microbiota in patients with immunoglobulin light chain amyloidosis

Emerging evidence revealed that gut microbial dysbiosis is implicated in the development of plasma cell dyscrasias and amyloid deposition diseases, but no data are available on the relationship between gut microbiota and immunoglobulin light chain (AL) amyloidosis. To characterize the gut microbiota...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in immunology 2022-10, Vol.13, p.973760-973760
Main Authors: Yan, Jipeng, Zhao, Jin, Ning, Xiaoxuan, Qin, Yunlong, Xing, Yan, Wang, Yuwei, Jia, Qing, Huang, Boyong, Ma, Rui, Lei, Changhui, Zhou, Meilan, Yu, Zixian, Zhang, Yumeng, Guo, Wei-Feng, Sun, Shiren
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Emerging evidence revealed that gut microbial dysbiosis is implicated in the development of plasma cell dyscrasias and amyloid deposition diseases, but no data are available on the relationship between gut microbiota and immunoglobulin light chain (AL) amyloidosis. To characterize the gut microbiota in patients with AL amyloidosis, we collected fecal samples from patients with AL amyloidosis (n=27) and age-, gender-, and BMI-matched healthy controls (n=27), and conducted 16S rRNA MiSeq sequencing and amplicon sequence variants (ASV)-based analysis. There were significant differences in gut microbial communities between the two groups. At the phylum level, the abundance of and was significantly higher, while reduced remarkably in patients with AL amyloidosis. At the genus level, 17 genera, including , were enriched, while only 4 genera including , , , and decreased evidently in patients with AL amyloidosis. Notably, 5 optimal ASV-based microbial markers were identified as the diagnostic model of AL amyloidosis and the AUC value of the train set and the test set was 0.8549 (95% CI 0.7310-0.9789) and 0.8025 (95% CI 0.5771-1), respectively. With a median follow-up of 19.0 months, further subgroup analysis also demonstrated some key gut microbial markers were related to disease severity, treatment response, and even prognosis of patients with AL amyloidosis. For the first time, we demonstrated the alterations of gut microbiota in AL amyloidosis and successfully established and validated the microbial-based diagnostic model, which boosted more studies about microbe-based strategies for diagnosis and treatment in patients with AL amyloidosis in the future.
ISSN:1664-3224
1664-3224
DOI:10.3389/fimmu.2022.973760