Loading…

Central and Peripheral Oxygen Distribution in Two Different Modes of Interval Training

In high-intensity interval training the interval duration can be adjusted to optimize training results in oxygen uptake, cardiac output, and local oxygen supply. This study aimed to compare these variables in two interval trainings (long intervals HIIT3m: 3 min work, 3 min active rest vs. short inte...

Full description

Saved in:
Bibliographic Details
Published in:Metabolites 2021-11, Vol.11 (11), p.790
Main Authors: Ksoll, Korbinian Sebastian Hermann, Mühlberger, Alexander, Stöcker, Fabian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c416t-8a8a915df24896b611156a41e46adc8b2583a54072fbf6c7b917f789eff7532e3
container_end_page
container_issue 11
container_start_page 790
container_title Metabolites
container_volume 11
creator Ksoll, Korbinian Sebastian Hermann
Mühlberger, Alexander
Stöcker, Fabian
description In high-intensity interval training the interval duration can be adjusted to optimize training results in oxygen uptake, cardiac output, and local oxygen supply. This study aimed to compare these variables in two interval trainings (long intervals HIIT3m: 3 min work, 3 min active rest vs. short intervals HIIT30s: 30 s work, 30 s active rest) at the same overall work rate and training duration. 24 participants accomplished both protocols, (work: 80% power output at VO2peak, relief: 85% power output at gas exchange threshold) in randomized order. Spirometry, impedance cardiography, and near-infrared spectroscopy were used to analyze the physiological stress of the cardiopulmonary system and muscle tissue. Although times above gas exchange threshold were shorter in HIIT3m (HIIT3m 1669.9 ± 310.9 s vs. HIIT30s 1769.5 ± 189.0 s, p = 0.034), both protocols evoked similar average fractional utilization of VO2peak (HIIT3m 65.23 ± 4.68% VO2peak vs. HIIT30s 64.39 ± 6.78% VO2peak, p = 0.261). However, HIIT3m resulted in higher cardiovascular responses during the loaded phases (VO2p < 0.001, cardiac output p < 0.001). Local hemodynamics were not different between both protocols. Average physiological responses were not different in both protocols owning to incomplete rests in HIIT30s and large response amplitudes in HIIT3m. Despite lower acute cardiovascular stress in HIIT30s, short submaximal intervals may also trigger microvascular and metabolic adaptions similar to HIIT3m. Therefore, the adaption of interval duration is an important tool to adjust the goals of interval training to the needs of the athlete or patient.
doi_str_mv 10.3390/metabo11110790
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a40869471d1944b88cf5e2af430e17cb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a40869471d1944b88cf5e2af430e17cb</doaj_id><sourcerecordid>2602126885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-8a8a915df24896b611156a41e46adc8b2583a54072fbf6c7b917f789eff7532e3</originalsourceid><addsrcrecordid>eNpdkk1vEzEQhlcIRKvSK-eVuHBJ8ffHBQkFKJGKyiFwtWzvOHW0sYO9W-i_r0MqRJjLeMbvPJoZTde9xuiKUo3e7WCyLuNmSGr0rDsnBKsF1ko__-d91l3WukXNBOIS4ZfdGWWKEMbUefdjCWkqduxtGvpvUOL-Dg7h7e-HDaT-Y6xTiW6eYk59TP36V265EKC0sv5rHqD2OfSrNEG5b2XrYmOKafOqexHsWOHyyV903z9_Wi-_LG5ur1fLDzcLz7CYFsoqqzEfAmFKCyfaJFxYhoEJO3jlCFfUcoYkCS4IL53GMkilIQTJKQF60a2O3CHbrdmXuLPlwWQbzZ9ELhtjyxT9CMYypIRmEg9YM-aU8oEDsYFRBFh611jvj6z97HYw-ONiTqCnPynemU2-N0oQSjhpgLdPgJJ_zlAns4vVwzjaBHmuhgjEUGuC0iZ98590m-eS2qoOKoKJUIo31dVR5UuutUD42wxG5nAB5vQC6COgBaKD</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602126885</pqid></control><display><type>article</type><title>Central and Peripheral Oxygen Distribution in Two Different Modes of Interval Training</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Ksoll, Korbinian Sebastian Hermann ; Mühlberger, Alexander ; Stöcker, Fabian</creator><creatorcontrib>Ksoll, Korbinian Sebastian Hermann ; Mühlberger, Alexander ; Stöcker, Fabian</creatorcontrib><description>In high-intensity interval training the interval duration can be adjusted to optimize training results in oxygen uptake, cardiac output, and local oxygen supply. This study aimed to compare these variables in two interval trainings (long intervals HIIT3m: 3 min work, 3 min active rest vs. short intervals HIIT30s: 30 s work, 30 s active rest) at the same overall work rate and training duration. 24 participants accomplished both protocols, (work: 80% power output at VO2peak, relief: 85% power output at gas exchange threshold) in randomized order. Spirometry, impedance cardiography, and near-infrared spectroscopy were used to analyze the physiological stress of the cardiopulmonary system and muscle tissue. Although times above gas exchange threshold were shorter in HIIT3m (HIIT3m 1669.9 ± 310.9 s vs. HIIT30s 1769.5 ± 189.0 s, p = 0.034), both protocols evoked similar average fractional utilization of VO2peak (HIIT3m 65.23 ± 4.68% VO2peak vs. HIIT30s 64.39 ± 6.78% VO2peak, p = 0.261). However, HIIT3m resulted in higher cardiovascular responses during the loaded phases (VO2p &lt; 0.001, cardiac output p &lt; 0.001). Local hemodynamics were not different between both protocols. Average physiological responses were not different in both protocols owning to incomplete rests in HIIT30s and large response amplitudes in HIIT3m. Despite lower acute cardiovascular stress in HIIT30s, short submaximal intervals may also trigger microvascular and metabolic adaptions similar to HIIT3m. Therefore, the adaption of interval duration is an important tool to adjust the goals of interval training to the needs of the athlete or patient.</description><identifier>ISSN: 2218-1989</identifier><identifier>EISSN: 2218-1989</identifier><identifier>DOI: 10.3390/metabo11110790</identifier><identifier>PMID: 34822448</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>cardiac output (CO) ; Cardiovascular system ; Exercise ; Gas exchange ; Heart ; Heart rate ; Hemodynamics ; Hemoglobin ; Infrared spectroscopy ; interval exercise ; Interval training ; Light ; Microvasculature ; near-infrared spectroscopy (NIRS) ; Oxygen ; oxygen availability (HHb/VO2) ; oxygen uptake (VO2) ; Physical fitness ; Rest ; Skin ; Spectrum analysis ; Warm up (exercise)</subject><ispartof>Metabolites, 2021-11, Vol.11 (11), p.790</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c416t-8a8a915df24896b611156a41e46adc8b2583a54072fbf6c7b917f789eff7532e3</cites><orcidid>0000-0003-2864-0969 ; 0000-0002-0161-6099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602126885/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602126885?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Ksoll, Korbinian Sebastian Hermann</creatorcontrib><creatorcontrib>Mühlberger, Alexander</creatorcontrib><creatorcontrib>Stöcker, Fabian</creatorcontrib><title>Central and Peripheral Oxygen Distribution in Two Different Modes of Interval Training</title><title>Metabolites</title><description>In high-intensity interval training the interval duration can be adjusted to optimize training results in oxygen uptake, cardiac output, and local oxygen supply. This study aimed to compare these variables in two interval trainings (long intervals HIIT3m: 3 min work, 3 min active rest vs. short intervals HIIT30s: 30 s work, 30 s active rest) at the same overall work rate and training duration. 24 participants accomplished both protocols, (work: 80% power output at VO2peak, relief: 85% power output at gas exchange threshold) in randomized order. Spirometry, impedance cardiography, and near-infrared spectroscopy were used to analyze the physiological stress of the cardiopulmonary system and muscle tissue. Although times above gas exchange threshold were shorter in HIIT3m (HIIT3m 1669.9 ± 310.9 s vs. HIIT30s 1769.5 ± 189.0 s, p = 0.034), both protocols evoked similar average fractional utilization of VO2peak (HIIT3m 65.23 ± 4.68% VO2peak vs. HIIT30s 64.39 ± 6.78% VO2peak, p = 0.261). However, HIIT3m resulted in higher cardiovascular responses during the loaded phases (VO2p &lt; 0.001, cardiac output p &lt; 0.001). Local hemodynamics were not different between both protocols. Average physiological responses were not different in both protocols owning to incomplete rests in HIIT30s and large response amplitudes in HIIT3m. Despite lower acute cardiovascular stress in HIIT30s, short submaximal intervals may also trigger microvascular and metabolic adaptions similar to HIIT3m. Therefore, the adaption of interval duration is an important tool to adjust the goals of interval training to the needs of the athlete or patient.</description><subject>cardiac output (CO)</subject><subject>Cardiovascular system</subject><subject>Exercise</subject><subject>Gas exchange</subject><subject>Heart</subject><subject>Heart rate</subject><subject>Hemodynamics</subject><subject>Hemoglobin</subject><subject>Infrared spectroscopy</subject><subject>interval exercise</subject><subject>Interval training</subject><subject>Light</subject><subject>Microvasculature</subject><subject>near-infrared spectroscopy (NIRS)</subject><subject>Oxygen</subject><subject>oxygen availability (HHb/VO2)</subject><subject>oxygen uptake (VO2)</subject><subject>Physical fitness</subject><subject>Rest</subject><subject>Skin</subject><subject>Spectrum analysis</subject><subject>Warm up (exercise)</subject><issn>2218-1989</issn><issn>2218-1989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vEzEQhlcIRKvSK-eVuHBJ8ffHBQkFKJGKyiFwtWzvOHW0sYO9W-i_r0MqRJjLeMbvPJoZTde9xuiKUo3e7WCyLuNmSGr0rDsnBKsF1ko__-d91l3WukXNBOIS4ZfdGWWKEMbUefdjCWkqduxtGvpvUOL-Dg7h7e-HDaT-Y6xTiW6eYk59TP36V265EKC0sv5rHqD2OfSrNEG5b2XrYmOKafOqexHsWOHyyV903z9_Wi-_LG5ur1fLDzcLz7CYFsoqqzEfAmFKCyfaJFxYhoEJO3jlCFfUcoYkCS4IL53GMkilIQTJKQF60a2O3CHbrdmXuLPlwWQbzZ9ELhtjyxT9CMYypIRmEg9YM-aU8oEDsYFRBFh611jvj6z97HYw-ONiTqCnPynemU2-N0oQSjhpgLdPgJJ_zlAns4vVwzjaBHmuhgjEUGuC0iZ98590m-eS2qoOKoKJUIo31dVR5UuutUD42wxG5nAB5vQC6COgBaKD</recordid><startdate>20211118</startdate><enddate>20211118</enddate><creator>Ksoll, Korbinian Sebastian Hermann</creator><creator>Mühlberger, Alexander</creator><creator>Stöcker, Fabian</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2864-0969</orcidid><orcidid>https://orcid.org/0000-0002-0161-6099</orcidid></search><sort><creationdate>20211118</creationdate><title>Central and Peripheral Oxygen Distribution in Two Different Modes of Interval Training</title><author>Ksoll, Korbinian Sebastian Hermann ; Mühlberger, Alexander ; Stöcker, Fabian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-8a8a915df24896b611156a41e46adc8b2583a54072fbf6c7b917f789eff7532e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>cardiac output (CO)</topic><topic>Cardiovascular system</topic><topic>Exercise</topic><topic>Gas exchange</topic><topic>Heart</topic><topic>Heart rate</topic><topic>Hemodynamics</topic><topic>Hemoglobin</topic><topic>Infrared spectroscopy</topic><topic>interval exercise</topic><topic>Interval training</topic><topic>Light</topic><topic>Microvasculature</topic><topic>near-infrared spectroscopy (NIRS)</topic><topic>Oxygen</topic><topic>oxygen availability (HHb/VO2)</topic><topic>oxygen uptake (VO2)</topic><topic>Physical fitness</topic><topic>Rest</topic><topic>Skin</topic><topic>Spectrum analysis</topic><topic>Warm up (exercise)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ksoll, Korbinian Sebastian Hermann</creatorcontrib><creatorcontrib>Mühlberger, Alexander</creatorcontrib><creatorcontrib>Stöcker, Fabian</creatorcontrib><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Metabolites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ksoll, Korbinian Sebastian Hermann</au><au>Mühlberger, Alexander</au><au>Stöcker, Fabian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Central and Peripheral Oxygen Distribution in Two Different Modes of Interval Training</atitle><jtitle>Metabolites</jtitle><date>2021-11-18</date><risdate>2021</risdate><volume>11</volume><issue>11</issue><spage>790</spage><pages>790-</pages><issn>2218-1989</issn><eissn>2218-1989</eissn><abstract>In high-intensity interval training the interval duration can be adjusted to optimize training results in oxygen uptake, cardiac output, and local oxygen supply. This study aimed to compare these variables in two interval trainings (long intervals HIIT3m: 3 min work, 3 min active rest vs. short intervals HIIT30s: 30 s work, 30 s active rest) at the same overall work rate and training duration. 24 participants accomplished both protocols, (work: 80% power output at VO2peak, relief: 85% power output at gas exchange threshold) in randomized order. Spirometry, impedance cardiography, and near-infrared spectroscopy were used to analyze the physiological stress of the cardiopulmonary system and muscle tissue. Although times above gas exchange threshold were shorter in HIIT3m (HIIT3m 1669.9 ± 310.9 s vs. HIIT30s 1769.5 ± 189.0 s, p = 0.034), both protocols evoked similar average fractional utilization of VO2peak (HIIT3m 65.23 ± 4.68% VO2peak vs. HIIT30s 64.39 ± 6.78% VO2peak, p = 0.261). However, HIIT3m resulted in higher cardiovascular responses during the loaded phases (VO2p &lt; 0.001, cardiac output p &lt; 0.001). Local hemodynamics were not different between both protocols. Average physiological responses were not different in both protocols owning to incomplete rests in HIIT30s and large response amplitudes in HIIT3m. Despite lower acute cardiovascular stress in HIIT30s, short submaximal intervals may also trigger microvascular and metabolic adaptions similar to HIIT3m. Therefore, the adaption of interval duration is an important tool to adjust the goals of interval training to the needs of the athlete or patient.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34822448</pmid><doi>10.3390/metabo11110790</doi><orcidid>https://orcid.org/0000-0003-2864-0969</orcidid><orcidid>https://orcid.org/0000-0002-0161-6099</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2218-1989
ispartof Metabolites, 2021-11, Vol.11 (11), p.790
issn 2218-1989
2218-1989
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a40869471d1944b88cf5e2af430e17cb
source Publicly Available Content Database; PubMed Central
subjects cardiac output (CO)
Cardiovascular system
Exercise
Gas exchange
Heart
Heart rate
Hemodynamics
Hemoglobin
Infrared spectroscopy
interval exercise
Interval training
Light
Microvasculature
near-infrared spectroscopy (NIRS)
Oxygen
oxygen availability (HHb/VO2)
oxygen uptake (VO2)
Physical fitness
Rest
Skin
Spectrum analysis
Warm up (exercise)
title Central and Peripheral Oxygen Distribution in Two Different Modes of Interval Training
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Central%20and%20Peripheral%20Oxygen%20Distribution%20in%20Two%20Different%20Modes%20of%20Interval%20Training&rft.jtitle=Metabolites&rft.au=Ksoll,%20Korbinian%20Sebastian%20Hermann&rft.date=2021-11-18&rft.volume=11&rft.issue=11&rft.spage=790&rft.pages=790-&rft.issn=2218-1989&rft.eissn=2218-1989&rft_id=info:doi/10.3390/metabo11110790&rft_dat=%3Cproquest_doaj_%3E2602126885%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-8a8a915df24896b611156a41e46adc8b2583a54072fbf6c7b917f789eff7532e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602126885&rft_id=info:pmid/34822448&rfr_iscdi=true