Loading…
Central and Peripheral Oxygen Distribution in Two Different Modes of Interval Training
In high-intensity interval training the interval duration can be adjusted to optimize training results in oxygen uptake, cardiac output, and local oxygen supply. This study aimed to compare these variables in two interval trainings (long intervals HIIT3m: 3 min work, 3 min active rest vs. short inte...
Saved in:
Published in: | Metabolites 2021-11, Vol.11 (11), p.790 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c416t-8a8a915df24896b611156a41e46adc8b2583a54072fbf6c7b917f789eff7532e3 |
container_end_page | |
container_issue | 11 |
container_start_page | 790 |
container_title | Metabolites |
container_volume | 11 |
creator | Ksoll, Korbinian Sebastian Hermann Mühlberger, Alexander Stöcker, Fabian |
description | In high-intensity interval training the interval duration can be adjusted to optimize training results in oxygen uptake, cardiac output, and local oxygen supply. This study aimed to compare these variables in two interval trainings (long intervals HIIT3m: 3 min work, 3 min active rest vs. short intervals HIIT30s: 30 s work, 30 s active rest) at the same overall work rate and training duration. 24 participants accomplished both protocols, (work: 80% power output at VO2peak, relief: 85% power output at gas exchange threshold) in randomized order. Spirometry, impedance cardiography, and near-infrared spectroscopy were used to analyze the physiological stress of the cardiopulmonary system and muscle tissue. Although times above gas exchange threshold were shorter in HIIT3m (HIIT3m 1669.9 ± 310.9 s vs. HIIT30s 1769.5 ± 189.0 s, p = 0.034), both protocols evoked similar average fractional utilization of VO2peak (HIIT3m 65.23 ± 4.68% VO2peak vs. HIIT30s 64.39 ± 6.78% VO2peak, p = 0.261). However, HIIT3m resulted in higher cardiovascular responses during the loaded phases (VO2p < 0.001, cardiac output p < 0.001). Local hemodynamics were not different between both protocols. Average physiological responses were not different in both protocols owning to incomplete rests in HIIT30s and large response amplitudes in HIIT3m. Despite lower acute cardiovascular stress in HIIT30s, short submaximal intervals may also trigger microvascular and metabolic adaptions similar to HIIT3m. Therefore, the adaption of interval duration is an important tool to adjust the goals of interval training to the needs of the athlete or patient. |
doi_str_mv | 10.3390/metabo11110790 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a40869471d1944b88cf5e2af430e17cb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a40869471d1944b88cf5e2af430e17cb</doaj_id><sourcerecordid>2602126885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-8a8a915df24896b611156a41e46adc8b2583a54072fbf6c7b917f789eff7532e3</originalsourceid><addsrcrecordid>eNpdkk1vEzEQhlcIRKvSK-eVuHBJ8ffHBQkFKJGKyiFwtWzvOHW0sYO9W-i_r0MqRJjLeMbvPJoZTde9xuiKUo3e7WCyLuNmSGr0rDsnBKsF1ko__-d91l3WukXNBOIS4ZfdGWWKEMbUefdjCWkqduxtGvpvUOL-Dg7h7e-HDaT-Y6xTiW6eYk59TP36V265EKC0sv5rHqD2OfSrNEG5b2XrYmOKafOqexHsWOHyyV903z9_Wi-_LG5ur1fLDzcLz7CYFsoqqzEfAmFKCyfaJFxYhoEJO3jlCFfUcoYkCS4IL53GMkilIQTJKQF60a2O3CHbrdmXuLPlwWQbzZ9ELhtjyxT9CMYypIRmEg9YM-aU8oEDsYFRBFh611jvj6z97HYw-ONiTqCnPynemU2-N0oQSjhpgLdPgJJ_zlAns4vVwzjaBHmuhgjEUGuC0iZ98590m-eS2qoOKoKJUIo31dVR5UuutUD42wxG5nAB5vQC6COgBaKD</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602126885</pqid></control><display><type>article</type><title>Central and Peripheral Oxygen Distribution in Two Different Modes of Interval Training</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Ksoll, Korbinian Sebastian Hermann ; Mühlberger, Alexander ; Stöcker, Fabian</creator><creatorcontrib>Ksoll, Korbinian Sebastian Hermann ; Mühlberger, Alexander ; Stöcker, Fabian</creatorcontrib><description>In high-intensity interval training the interval duration can be adjusted to optimize training results in oxygen uptake, cardiac output, and local oxygen supply. This study aimed to compare these variables in two interval trainings (long intervals HIIT3m: 3 min work, 3 min active rest vs. short intervals HIIT30s: 30 s work, 30 s active rest) at the same overall work rate and training duration. 24 participants accomplished both protocols, (work: 80% power output at VO2peak, relief: 85% power output at gas exchange threshold) in randomized order. Spirometry, impedance cardiography, and near-infrared spectroscopy were used to analyze the physiological stress of the cardiopulmonary system and muscle tissue. Although times above gas exchange threshold were shorter in HIIT3m (HIIT3m 1669.9 ± 310.9 s vs. HIIT30s 1769.5 ± 189.0 s, p = 0.034), both protocols evoked similar average fractional utilization of VO2peak (HIIT3m 65.23 ± 4.68% VO2peak vs. HIIT30s 64.39 ± 6.78% VO2peak, p = 0.261). However, HIIT3m resulted in higher cardiovascular responses during the loaded phases (VO2p < 0.001, cardiac output p < 0.001). Local hemodynamics were not different between both protocols. Average physiological responses were not different in both protocols owning to incomplete rests in HIIT30s and large response amplitudes in HIIT3m. Despite lower acute cardiovascular stress in HIIT30s, short submaximal intervals may also trigger microvascular and metabolic adaptions similar to HIIT3m. Therefore, the adaption of interval duration is an important tool to adjust the goals of interval training to the needs of the athlete or patient.</description><identifier>ISSN: 2218-1989</identifier><identifier>EISSN: 2218-1989</identifier><identifier>DOI: 10.3390/metabo11110790</identifier><identifier>PMID: 34822448</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>cardiac output (CO) ; Cardiovascular system ; Exercise ; Gas exchange ; Heart ; Heart rate ; Hemodynamics ; Hemoglobin ; Infrared spectroscopy ; interval exercise ; Interval training ; Light ; Microvasculature ; near-infrared spectroscopy (NIRS) ; Oxygen ; oxygen availability (HHb/VO2) ; oxygen uptake (VO2) ; Physical fitness ; Rest ; Skin ; Spectrum analysis ; Warm up (exercise)</subject><ispartof>Metabolites, 2021-11, Vol.11 (11), p.790</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c416t-8a8a915df24896b611156a41e46adc8b2583a54072fbf6c7b917f789eff7532e3</cites><orcidid>0000-0003-2864-0969 ; 0000-0002-0161-6099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602126885/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602126885?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Ksoll, Korbinian Sebastian Hermann</creatorcontrib><creatorcontrib>Mühlberger, Alexander</creatorcontrib><creatorcontrib>Stöcker, Fabian</creatorcontrib><title>Central and Peripheral Oxygen Distribution in Two Different Modes of Interval Training</title><title>Metabolites</title><description>In high-intensity interval training the interval duration can be adjusted to optimize training results in oxygen uptake, cardiac output, and local oxygen supply. This study aimed to compare these variables in two interval trainings (long intervals HIIT3m: 3 min work, 3 min active rest vs. short intervals HIIT30s: 30 s work, 30 s active rest) at the same overall work rate and training duration. 24 participants accomplished both protocols, (work: 80% power output at VO2peak, relief: 85% power output at gas exchange threshold) in randomized order. Spirometry, impedance cardiography, and near-infrared spectroscopy were used to analyze the physiological stress of the cardiopulmonary system and muscle tissue. Although times above gas exchange threshold were shorter in HIIT3m (HIIT3m 1669.9 ± 310.9 s vs. HIIT30s 1769.5 ± 189.0 s, p = 0.034), both protocols evoked similar average fractional utilization of VO2peak (HIIT3m 65.23 ± 4.68% VO2peak vs. HIIT30s 64.39 ± 6.78% VO2peak, p = 0.261). However, HIIT3m resulted in higher cardiovascular responses during the loaded phases (VO2p < 0.001, cardiac output p < 0.001). Local hemodynamics were not different between both protocols. Average physiological responses were not different in both protocols owning to incomplete rests in HIIT30s and large response amplitudes in HIIT3m. Despite lower acute cardiovascular stress in HIIT30s, short submaximal intervals may also trigger microvascular and metabolic adaptions similar to HIIT3m. Therefore, the adaption of interval duration is an important tool to adjust the goals of interval training to the needs of the athlete or patient.</description><subject>cardiac output (CO)</subject><subject>Cardiovascular system</subject><subject>Exercise</subject><subject>Gas exchange</subject><subject>Heart</subject><subject>Heart rate</subject><subject>Hemodynamics</subject><subject>Hemoglobin</subject><subject>Infrared spectroscopy</subject><subject>interval exercise</subject><subject>Interval training</subject><subject>Light</subject><subject>Microvasculature</subject><subject>near-infrared spectroscopy (NIRS)</subject><subject>Oxygen</subject><subject>oxygen availability (HHb/VO2)</subject><subject>oxygen uptake (VO2)</subject><subject>Physical fitness</subject><subject>Rest</subject><subject>Skin</subject><subject>Spectrum analysis</subject><subject>Warm up (exercise)</subject><issn>2218-1989</issn><issn>2218-1989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vEzEQhlcIRKvSK-eVuHBJ8ffHBQkFKJGKyiFwtWzvOHW0sYO9W-i_r0MqRJjLeMbvPJoZTde9xuiKUo3e7WCyLuNmSGr0rDsnBKsF1ko__-d91l3WukXNBOIS4ZfdGWWKEMbUefdjCWkqduxtGvpvUOL-Dg7h7e-HDaT-Y6xTiW6eYk59TP36V265EKC0sv5rHqD2OfSrNEG5b2XrYmOKafOqexHsWOHyyV903z9_Wi-_LG5ur1fLDzcLz7CYFsoqqzEfAmFKCyfaJFxYhoEJO3jlCFfUcoYkCS4IL53GMkilIQTJKQF60a2O3CHbrdmXuLPlwWQbzZ9ELhtjyxT9CMYypIRmEg9YM-aU8oEDsYFRBFh611jvj6z97HYw-ONiTqCnPynemU2-N0oQSjhpgLdPgJJ_zlAns4vVwzjaBHmuhgjEUGuC0iZ98590m-eS2qoOKoKJUIo31dVR5UuutUD42wxG5nAB5vQC6COgBaKD</recordid><startdate>20211118</startdate><enddate>20211118</enddate><creator>Ksoll, Korbinian Sebastian Hermann</creator><creator>Mühlberger, Alexander</creator><creator>Stöcker, Fabian</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2864-0969</orcidid><orcidid>https://orcid.org/0000-0002-0161-6099</orcidid></search><sort><creationdate>20211118</creationdate><title>Central and Peripheral Oxygen Distribution in Two Different Modes of Interval Training</title><author>Ksoll, Korbinian Sebastian Hermann ; Mühlberger, Alexander ; Stöcker, Fabian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-8a8a915df24896b611156a41e46adc8b2583a54072fbf6c7b917f789eff7532e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>cardiac output (CO)</topic><topic>Cardiovascular system</topic><topic>Exercise</topic><topic>Gas exchange</topic><topic>Heart</topic><topic>Heart rate</topic><topic>Hemodynamics</topic><topic>Hemoglobin</topic><topic>Infrared spectroscopy</topic><topic>interval exercise</topic><topic>Interval training</topic><topic>Light</topic><topic>Microvasculature</topic><topic>near-infrared spectroscopy (NIRS)</topic><topic>Oxygen</topic><topic>oxygen availability (HHb/VO2)</topic><topic>oxygen uptake (VO2)</topic><topic>Physical fitness</topic><topic>Rest</topic><topic>Skin</topic><topic>Spectrum analysis</topic><topic>Warm up (exercise)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ksoll, Korbinian Sebastian Hermann</creatorcontrib><creatorcontrib>Mühlberger, Alexander</creatorcontrib><creatorcontrib>Stöcker, Fabian</creatorcontrib><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Metabolites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ksoll, Korbinian Sebastian Hermann</au><au>Mühlberger, Alexander</au><au>Stöcker, Fabian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Central and Peripheral Oxygen Distribution in Two Different Modes of Interval Training</atitle><jtitle>Metabolites</jtitle><date>2021-11-18</date><risdate>2021</risdate><volume>11</volume><issue>11</issue><spage>790</spage><pages>790-</pages><issn>2218-1989</issn><eissn>2218-1989</eissn><abstract>In high-intensity interval training the interval duration can be adjusted to optimize training results in oxygen uptake, cardiac output, and local oxygen supply. This study aimed to compare these variables in two interval trainings (long intervals HIIT3m: 3 min work, 3 min active rest vs. short intervals HIIT30s: 30 s work, 30 s active rest) at the same overall work rate and training duration. 24 participants accomplished both protocols, (work: 80% power output at VO2peak, relief: 85% power output at gas exchange threshold) in randomized order. Spirometry, impedance cardiography, and near-infrared spectroscopy were used to analyze the physiological stress of the cardiopulmonary system and muscle tissue. Although times above gas exchange threshold were shorter in HIIT3m (HIIT3m 1669.9 ± 310.9 s vs. HIIT30s 1769.5 ± 189.0 s, p = 0.034), both protocols evoked similar average fractional utilization of VO2peak (HIIT3m 65.23 ± 4.68% VO2peak vs. HIIT30s 64.39 ± 6.78% VO2peak, p = 0.261). However, HIIT3m resulted in higher cardiovascular responses during the loaded phases (VO2p < 0.001, cardiac output p < 0.001). Local hemodynamics were not different between both protocols. Average physiological responses were not different in both protocols owning to incomplete rests in HIIT30s and large response amplitudes in HIIT3m. Despite lower acute cardiovascular stress in HIIT30s, short submaximal intervals may also trigger microvascular and metabolic adaptions similar to HIIT3m. Therefore, the adaption of interval duration is an important tool to adjust the goals of interval training to the needs of the athlete or patient.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34822448</pmid><doi>10.3390/metabo11110790</doi><orcidid>https://orcid.org/0000-0003-2864-0969</orcidid><orcidid>https://orcid.org/0000-0002-0161-6099</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2218-1989 |
ispartof | Metabolites, 2021-11, Vol.11 (11), p.790 |
issn | 2218-1989 2218-1989 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a40869471d1944b88cf5e2af430e17cb |
source | Publicly Available Content Database; PubMed Central |
subjects | cardiac output (CO) Cardiovascular system Exercise Gas exchange Heart Heart rate Hemodynamics Hemoglobin Infrared spectroscopy interval exercise Interval training Light Microvasculature near-infrared spectroscopy (NIRS) Oxygen oxygen availability (HHb/VO2) oxygen uptake (VO2) Physical fitness Rest Skin Spectrum analysis Warm up (exercise) |
title | Central and Peripheral Oxygen Distribution in Two Different Modes of Interval Training |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Central%20and%20Peripheral%20Oxygen%20Distribution%20in%20Two%20Different%20Modes%20of%20Interval%20Training&rft.jtitle=Metabolites&rft.au=Ksoll,%20Korbinian%20Sebastian%20Hermann&rft.date=2021-11-18&rft.volume=11&rft.issue=11&rft.spage=790&rft.pages=790-&rft.issn=2218-1989&rft.eissn=2218-1989&rft_id=info:doi/10.3390/metabo11110790&rft_dat=%3Cproquest_doaj_%3E2602126885%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-8a8a915df24896b611156a41e46adc8b2583a54072fbf6c7b917f789eff7532e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602126885&rft_id=info:pmid/34822448&rfr_iscdi=true |