Loading…

Patient-Derived, Drug-Resistant Colon Cancer Cells Evade Chemotherapeutic Drug Effects via the Induction of Epithelial-Mesenchymal Transition-Mediated Angiogenesis

Cancer cells can exhibit resistance to different anticancer drugs by acquiring enhanced anti-apoptotic potential, improved DNA injury resistance, diminished enzymatic inactivation, and enhanced permeability, allowing for cell survival. However, the genetic mechanisms for these effects are unknown. T...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2020-10, Vol.21 (20), p.7469
Main Authors: Lim, Jin Hong, Choi, Kyung Hwa, Kim, Soo Young, Park, Cheong Soo, Kim, Seok-Mo, Park, Ki Cheong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cancer cells can exhibit resistance to different anticancer drugs by acquiring enhanced anti-apoptotic potential, improved DNA injury resistance, diminished enzymatic inactivation, and enhanced permeability, allowing for cell survival. However, the genetic mechanisms for these effects are unknown. Therefore, in this study, we obtained drug-sensitive HT-29 cells (commercially) and drug-resistant cancer cells (derived from biochemically and histologically confirmed colon cancer patients) and performed microarray analysis to identify genetic differences. Cellular proliferation and other properties were determined after treatment with oxaliplatin, lenvatinib, or their combination. In vivo, tumor volume and other properties were examined using a mouse xenograft model. The oxaliplatin and lenvatinib cotreatment group showed more significant cell cycle arrest than the control group and groups treated with either agent alone. Oxaliplatin and lenvatinib cotreatment induced the most significant tumor shrinkage in the xenograft model. Drug-resistant and metastatic colon cancer cells evaded the anticancer drug effects via angiogenesis. These findings present a breakthrough strategy for treating drug-resistant cancer.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms21207469