Loading…
Improved Light Robust Optimization Strategy for Virtual Power Plant Operations with Fluctuating Demand
Aggregating loads and resources on both the supply and demand side of a virtual power plant (VPP) can enhance coordination between distributed generation systems and the power grid, ultimately improving the utilization rate and economic benefits of renewable energy. The energy storage system (ESS) h...
Saved in:
Published in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-ed4206ec253434ac8e60830c1e63fc30a2a95eb2e639bce6abd7180d3daee4863 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-ed4206ec253434ac8e60830c1e63fc30a2a95eb2e639bce6abd7180d3daee4863 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Wu, Xiaomin Xiong, Haozheng Li, Shaoyi Gan, Shengfeng Hou, Changhui Ding, Zhilin |
description | Aggregating loads and resources on both the supply and demand side of a virtual power plant (VPP) can enhance coordination between distributed generation systems and the power grid, ultimately improving the utilization rate and economic benefits of renewable energy. The energy storage system (ESS) has the added benefit of flexible demand-side resources, which can effectively suppress output uncertainty of distributed units and balance load fluctuations. This paper proposes an improved light robust (ILR) optimization method for the ESS's demand-side resource, which optimizes the conservatism caused by robust optimization (RO) in solving the VPP optimal scheme, ultimately reducing running costs. By analyzing random factors in the VPP operation process, the ILR dynamically calls ESS backup power to participate in system operation when load fluctuation and output are inaccurate or uncertain, provided operational constraints are met. This approach balances both economy and optimization, ensuring the balance between supply and load fluctuates, improving the utilization rate of ESS backup power, and reducing the total operating cost of VPP operation. The case study show that the model can effectively utilize the reserve energy of the ESS to cope with the load fluctuations during normal operation of the system, improve the economy while ensuring the safe operation of the virtual power plant system, and leave some optimization space for decision-makers by utilizing the demand-side resource characteristics of the energy storage system. |
doi_str_mv | 10.1109/ACCESS.2023.3280057 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a426d166cb5948dd98911fc73dfca058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10135094</ieee_id><doaj_id>oai_doaj_org_article_a426d166cb5948dd98911fc73dfca058</doaj_id><sourcerecordid>2823186196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-ed4206ec253434ac8e60830c1e63fc30a2a95eb2e639bce6abd7180d3daee4863</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIOAL4GCJc4sfiWsfUXlVqgSiwNXa2JviKo2L41DB15MShNjLPjQzu9rJsjNGx4xRfXk1nd4sFmNOuRgLrigtJnvZEWdSj0Qh5P6_-jA7bdsV7UP1o2JylFWz9SaGD3Rk7pdviTyFsmsTedgkv_ZfkHxoyCJFSLj8JFWI5NXH1EFNHsMWI3msodmhMf5AW7L16Y3c1p3tQck3S3KNa2jcSXZQQd3i6W8-zl5ub56n96P5w91sejUf2ZzqNEKXcyrR8kLkIgerUFIlqGUoRWUFBQ66wJL3rS4tSijdhCnqhAPEXElxnM0GXRdgZTbRryF-mgDe_AxCXBqIydsaDeRcOialLQudK-e00oxVdiJcZYEWqte6GLT6B7132CazCl1s-vMNV1wwJZnebRQDysbQthGrv62Mmp0_ZvDH7Pwxv_70rPOB5RHxH4OJgupcfAPS-Y1A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823186196</pqid></control><display><type>article</type><title>Improved Light Robust Optimization Strategy for Virtual Power Plant Operations with Fluctuating Demand</title><source>IEEE Xplore Open Access Journals</source><creator>Wu, Xiaomin ; Xiong, Haozheng ; Li, Shaoyi ; Gan, Shengfeng ; Hou, Changhui ; Ding, Zhilin</creator><creatorcontrib>Wu, Xiaomin ; Xiong, Haozheng ; Li, Shaoyi ; Gan, Shengfeng ; Hou, Changhui ; Ding, Zhilin</creatorcontrib><description>Aggregating loads and resources on both the supply and demand side of a virtual power plant (VPP) can enhance coordination between distributed generation systems and the power grid, ultimately improving the utilization rate and economic benefits of renewable energy. The energy storage system (ESS) has the added benefit of flexible demand-side resources, which can effectively suppress output uncertainty of distributed units and balance load fluctuations. This paper proposes an improved light robust (ILR) optimization method for the ESS's demand-side resource, which optimizes the conservatism caused by robust optimization (RO) in solving the VPP optimal scheme, ultimately reducing running costs. By analyzing random factors in the VPP operation process, the ILR dynamically calls ESS backup power to participate in system operation when load fluctuation and output are inaccurate or uncertain, provided operational constraints are met. This approach balances both economy and optimization, ensuring the balance between supply and load fluctuates, improving the utilization rate of ESS backup power, and reducing the total operating cost of VPP operation. The case study show that the model can effectively utilize the reserve energy of the ESS to cope with the load fluctuations during normal operation of the system, improve the economy while ensuring the safe operation of the virtual power plant system, and leave some optimization space for decision-makers by utilizing the demand-side resource characteristics of the energy storage system.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3280057</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Batteries ; Cost analysis ; Costs ; Data centers ; Decision making ; demand-side resources ; Distributed generation ; Electrical loads ; Energy storage ; energy storage system ; Improve light robust ; Load ; Load fluctuation ; Microbalances ; Optimization ; Power plants ; Power systems ; Renewable energy sources ; Robustness ; Supply & demand ; uncertainty demand ; virtual power plant ; Virtual power plants</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-ed4206ec253434ac8e60830c1e63fc30a2a95eb2e639bce6abd7180d3daee4863</citedby><cites>FETCH-LOGICAL-c409t-ed4206ec253434ac8e60830c1e63fc30a2a95eb2e639bce6abd7180d3daee4863</cites><orcidid>0000-0003-3922-7491 ; 0000-0002-6471-9255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10135094$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Wu, Xiaomin</creatorcontrib><creatorcontrib>Xiong, Haozheng</creatorcontrib><creatorcontrib>Li, Shaoyi</creatorcontrib><creatorcontrib>Gan, Shengfeng</creatorcontrib><creatorcontrib>Hou, Changhui</creatorcontrib><creatorcontrib>Ding, Zhilin</creatorcontrib><title>Improved Light Robust Optimization Strategy for Virtual Power Plant Operations with Fluctuating Demand</title><title>IEEE access</title><addtitle>Access</addtitle><description>Aggregating loads and resources on both the supply and demand side of a virtual power plant (VPP) can enhance coordination between distributed generation systems and the power grid, ultimately improving the utilization rate and economic benefits of renewable energy. The energy storage system (ESS) has the added benefit of flexible demand-side resources, which can effectively suppress output uncertainty of distributed units and balance load fluctuations. This paper proposes an improved light robust (ILR) optimization method for the ESS's demand-side resource, which optimizes the conservatism caused by robust optimization (RO) in solving the VPP optimal scheme, ultimately reducing running costs. By analyzing random factors in the VPP operation process, the ILR dynamically calls ESS backup power to participate in system operation when load fluctuation and output are inaccurate or uncertain, provided operational constraints are met. This approach balances both economy and optimization, ensuring the balance between supply and load fluctuates, improving the utilization rate of ESS backup power, and reducing the total operating cost of VPP operation. The case study show that the model can effectively utilize the reserve energy of the ESS to cope with the load fluctuations during normal operation of the system, improve the economy while ensuring the safe operation of the virtual power plant system, and leave some optimization space for decision-makers by utilizing the demand-side resource characteristics of the energy storage system.</description><subject>Batteries</subject><subject>Cost analysis</subject><subject>Costs</subject><subject>Data centers</subject><subject>Decision making</subject><subject>demand-side resources</subject><subject>Distributed generation</subject><subject>Electrical loads</subject><subject>Energy storage</subject><subject>energy storage system</subject><subject>Improve light robust</subject><subject>Load</subject><subject>Load fluctuation</subject><subject>Microbalances</subject><subject>Optimization</subject><subject>Power plants</subject><subject>Power systems</subject><subject>Renewable energy sources</subject><subject>Robustness</subject><subject>Supply & demand</subject><subject>uncertainty demand</subject><subject>virtual power plant</subject><subject>Virtual power plants</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIOAL4GCJc4sfiWsfUXlVqgSiwNXa2JviKo2L41DB15MShNjLPjQzu9rJsjNGx4xRfXk1nd4sFmNOuRgLrigtJnvZEWdSj0Qh5P6_-jA7bdsV7UP1o2JylFWz9SaGD3Rk7pdviTyFsmsTedgkv_ZfkHxoyCJFSLj8JFWI5NXH1EFNHsMWI3msodmhMf5AW7L16Y3c1p3tQck3S3KNa2jcSXZQQd3i6W8-zl5ub56n96P5w91sejUf2ZzqNEKXcyrR8kLkIgerUFIlqGUoRWUFBQ66wJL3rS4tSijdhCnqhAPEXElxnM0GXRdgZTbRryF-mgDe_AxCXBqIydsaDeRcOialLQudK-e00oxVdiJcZYEWqte6GLT6B7132CazCl1s-vMNV1wwJZnebRQDysbQthGrv62Mmp0_ZvDH7Pwxv_70rPOB5RHxH4OJgupcfAPS-Y1A</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wu, Xiaomin</creator><creator>Xiong, Haozheng</creator><creator>Li, Shaoyi</creator><creator>Gan, Shengfeng</creator><creator>Hou, Changhui</creator><creator>Ding, Zhilin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3922-7491</orcidid><orcidid>https://orcid.org/0000-0002-6471-9255</orcidid></search><sort><creationdate>20230101</creationdate><title>Improved Light Robust Optimization Strategy for Virtual Power Plant Operations with Fluctuating Demand</title><author>Wu, Xiaomin ; Xiong, Haozheng ; Li, Shaoyi ; Gan, Shengfeng ; Hou, Changhui ; Ding, Zhilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-ed4206ec253434ac8e60830c1e63fc30a2a95eb2e639bce6abd7180d3daee4863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Batteries</topic><topic>Cost analysis</topic><topic>Costs</topic><topic>Data centers</topic><topic>Decision making</topic><topic>demand-side resources</topic><topic>Distributed generation</topic><topic>Electrical loads</topic><topic>Energy storage</topic><topic>energy storage system</topic><topic>Improve light robust</topic><topic>Load</topic><topic>Load fluctuation</topic><topic>Microbalances</topic><topic>Optimization</topic><topic>Power plants</topic><topic>Power systems</topic><topic>Renewable energy sources</topic><topic>Robustness</topic><topic>Supply & demand</topic><topic>uncertainty demand</topic><topic>virtual power plant</topic><topic>Virtual power plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xiaomin</creatorcontrib><creatorcontrib>Xiong, Haozheng</creatorcontrib><creatorcontrib>Li, Shaoyi</creatorcontrib><creatorcontrib>Gan, Shengfeng</creatorcontrib><creatorcontrib>Hou, Changhui</creatorcontrib><creatorcontrib>Ding, Zhilin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xiaomin</au><au>Xiong, Haozheng</au><au>Li, Shaoyi</au><au>Gan, Shengfeng</au><au>Hou, Changhui</au><au>Ding, Zhilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Light Robust Optimization Strategy for Virtual Power Plant Operations with Fluctuating Demand</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Aggregating loads and resources on both the supply and demand side of a virtual power plant (VPP) can enhance coordination between distributed generation systems and the power grid, ultimately improving the utilization rate and economic benefits of renewable energy. The energy storage system (ESS) has the added benefit of flexible demand-side resources, which can effectively suppress output uncertainty of distributed units and balance load fluctuations. This paper proposes an improved light robust (ILR) optimization method for the ESS's demand-side resource, which optimizes the conservatism caused by robust optimization (RO) in solving the VPP optimal scheme, ultimately reducing running costs. By analyzing random factors in the VPP operation process, the ILR dynamically calls ESS backup power to participate in system operation when load fluctuation and output are inaccurate or uncertain, provided operational constraints are met. This approach balances both economy and optimization, ensuring the balance between supply and load fluctuates, improving the utilization rate of ESS backup power, and reducing the total operating cost of VPP operation. The case study show that the model can effectively utilize the reserve energy of the ESS to cope with the load fluctuations during normal operation of the system, improve the economy while ensuring the safe operation of the virtual power plant system, and leave some optimization space for decision-makers by utilizing the demand-side resource characteristics of the energy storage system.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3280057</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3922-7491</orcidid><orcidid>https://orcid.org/0000-0002-6471-9255</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a426d166cb5948dd98911fc73dfca058 |
source | IEEE Xplore Open Access Journals |
subjects | Batteries Cost analysis Costs Data centers Decision making demand-side resources Distributed generation Electrical loads Energy storage energy storage system Improve light robust Load Load fluctuation Microbalances Optimization Power plants Power systems Renewable energy sources Robustness Supply & demand uncertainty demand virtual power plant Virtual power plants |
title | Improved Light Robust Optimization Strategy for Virtual Power Plant Operations with Fluctuating Demand |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Light%20Robust%20Optimization%20Strategy%20for%20Virtual%20Power%20Plant%20Operations%20with%20Fluctuating%20Demand&rft.jtitle=IEEE%20access&rft.au=Wu,%20Xiaomin&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3280057&rft_dat=%3Cproquest_doaj_%3E2823186196%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-ed4206ec253434ac8e60830c1e63fc30a2a95eb2e639bce6abd7180d3daee4863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2823186196&rft_id=info:pmid/&rft_ieee_id=10135094&rfr_iscdi=true |