Loading…

Improved Light Robust Optimization Strategy for Virtual Power Plant Operations with Fluctuating Demand

Aggregating loads and resources on both the supply and demand side of a virtual power plant (VPP) can enhance coordination between distributed generation systems and the power grid, ultimately improving the utilization rate and economic benefits of renewable energy. The energy storage system (ESS) h...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2023-01, Vol.11, p.1-1
Main Authors: Wu, Xiaomin, Xiong, Haozheng, Li, Shaoyi, Gan, Shengfeng, Hou, Changhui, Ding, Zhilin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-ed4206ec253434ac8e60830c1e63fc30a2a95eb2e639bce6abd7180d3daee4863
cites cdi_FETCH-LOGICAL-c409t-ed4206ec253434ac8e60830c1e63fc30a2a95eb2e639bce6abd7180d3daee4863
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Wu, Xiaomin
Xiong, Haozheng
Li, Shaoyi
Gan, Shengfeng
Hou, Changhui
Ding, Zhilin
description Aggregating loads and resources on both the supply and demand side of a virtual power plant (VPP) can enhance coordination between distributed generation systems and the power grid, ultimately improving the utilization rate and economic benefits of renewable energy. The energy storage system (ESS) has the added benefit of flexible demand-side resources, which can effectively suppress output uncertainty of distributed units and balance load fluctuations. This paper proposes an improved light robust (ILR) optimization method for the ESS's demand-side resource, which optimizes the conservatism caused by robust optimization (RO) in solving the VPP optimal scheme, ultimately reducing running costs. By analyzing random factors in the VPP operation process, the ILR dynamically calls ESS backup power to participate in system operation when load fluctuation and output are inaccurate or uncertain, provided operational constraints are met. This approach balances both economy and optimization, ensuring the balance between supply and load fluctuates, improving the utilization rate of ESS backup power, and reducing the total operating cost of VPP operation. The case study show that the model can effectively utilize the reserve energy of the ESS to cope with the load fluctuations during normal operation of the system, improve the economy while ensuring the safe operation of the virtual power plant system, and leave some optimization space for decision-makers by utilizing the demand-side resource characteristics of the energy storage system.
doi_str_mv 10.1109/ACCESS.2023.3280057
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a426d166cb5948dd98911fc73dfca058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10135094</ieee_id><doaj_id>oai_doaj_org_article_a426d166cb5948dd98911fc73dfca058</doaj_id><sourcerecordid>2823186196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-ed4206ec253434ac8e60830c1e63fc30a2a95eb2e639bce6abd7180d3daee4863</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIOAL4GCJc4sfiWsfUXlVqgSiwNXa2JviKo2L41DB15MShNjLPjQzu9rJsjNGx4xRfXk1nd4sFmNOuRgLrigtJnvZEWdSj0Qh5P6_-jA7bdsV7UP1o2JylFWz9SaGD3Rk7pdviTyFsmsTedgkv_ZfkHxoyCJFSLj8JFWI5NXH1EFNHsMWI3msodmhMf5AW7L16Y3c1p3tQck3S3KNa2jcSXZQQd3i6W8-zl5ub56n96P5w91sejUf2ZzqNEKXcyrR8kLkIgerUFIlqGUoRWUFBQ66wJL3rS4tSijdhCnqhAPEXElxnM0GXRdgZTbRryF-mgDe_AxCXBqIydsaDeRcOialLQudK-e00oxVdiJcZYEWqte6GLT6B7132CazCl1s-vMNV1wwJZnebRQDysbQthGrv62Mmp0_ZvDH7Pwxv_70rPOB5RHxH4OJgupcfAPS-Y1A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823186196</pqid></control><display><type>article</type><title>Improved Light Robust Optimization Strategy for Virtual Power Plant Operations with Fluctuating Demand</title><source>IEEE Xplore Open Access Journals</source><creator>Wu, Xiaomin ; Xiong, Haozheng ; Li, Shaoyi ; Gan, Shengfeng ; Hou, Changhui ; Ding, Zhilin</creator><creatorcontrib>Wu, Xiaomin ; Xiong, Haozheng ; Li, Shaoyi ; Gan, Shengfeng ; Hou, Changhui ; Ding, Zhilin</creatorcontrib><description>Aggregating loads and resources on both the supply and demand side of a virtual power plant (VPP) can enhance coordination between distributed generation systems and the power grid, ultimately improving the utilization rate and economic benefits of renewable energy. The energy storage system (ESS) has the added benefit of flexible demand-side resources, which can effectively suppress output uncertainty of distributed units and balance load fluctuations. This paper proposes an improved light robust (ILR) optimization method for the ESS's demand-side resource, which optimizes the conservatism caused by robust optimization (RO) in solving the VPP optimal scheme, ultimately reducing running costs. By analyzing random factors in the VPP operation process, the ILR dynamically calls ESS backup power to participate in system operation when load fluctuation and output are inaccurate or uncertain, provided operational constraints are met. This approach balances both economy and optimization, ensuring the balance between supply and load fluctuates, improving the utilization rate of ESS backup power, and reducing the total operating cost of VPP operation. The case study show that the model can effectively utilize the reserve energy of the ESS to cope with the load fluctuations during normal operation of the system, improve the economy while ensuring the safe operation of the virtual power plant system, and leave some optimization space for decision-makers by utilizing the demand-side resource characteristics of the energy storage system.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3280057</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Batteries ; Cost analysis ; Costs ; Data centers ; Decision making ; demand-side resources ; Distributed generation ; Electrical loads ; Energy storage ; energy storage system ; Improve light robust ; Load ; Load fluctuation ; Microbalances ; Optimization ; Power plants ; Power systems ; Renewable energy sources ; Robustness ; Supply &amp; demand ; uncertainty demand ; virtual power plant ; Virtual power plants</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-ed4206ec253434ac8e60830c1e63fc30a2a95eb2e639bce6abd7180d3daee4863</citedby><cites>FETCH-LOGICAL-c409t-ed4206ec253434ac8e60830c1e63fc30a2a95eb2e639bce6abd7180d3daee4863</cites><orcidid>0000-0003-3922-7491 ; 0000-0002-6471-9255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10135094$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Wu, Xiaomin</creatorcontrib><creatorcontrib>Xiong, Haozheng</creatorcontrib><creatorcontrib>Li, Shaoyi</creatorcontrib><creatorcontrib>Gan, Shengfeng</creatorcontrib><creatorcontrib>Hou, Changhui</creatorcontrib><creatorcontrib>Ding, Zhilin</creatorcontrib><title>Improved Light Robust Optimization Strategy for Virtual Power Plant Operations with Fluctuating Demand</title><title>IEEE access</title><addtitle>Access</addtitle><description>Aggregating loads and resources on both the supply and demand side of a virtual power plant (VPP) can enhance coordination between distributed generation systems and the power grid, ultimately improving the utilization rate and economic benefits of renewable energy. The energy storage system (ESS) has the added benefit of flexible demand-side resources, which can effectively suppress output uncertainty of distributed units and balance load fluctuations. This paper proposes an improved light robust (ILR) optimization method for the ESS's demand-side resource, which optimizes the conservatism caused by robust optimization (RO) in solving the VPP optimal scheme, ultimately reducing running costs. By analyzing random factors in the VPP operation process, the ILR dynamically calls ESS backup power to participate in system operation when load fluctuation and output are inaccurate or uncertain, provided operational constraints are met. This approach balances both economy and optimization, ensuring the balance between supply and load fluctuates, improving the utilization rate of ESS backup power, and reducing the total operating cost of VPP operation. The case study show that the model can effectively utilize the reserve energy of the ESS to cope with the load fluctuations during normal operation of the system, improve the economy while ensuring the safe operation of the virtual power plant system, and leave some optimization space for decision-makers by utilizing the demand-side resource characteristics of the energy storage system.</description><subject>Batteries</subject><subject>Cost analysis</subject><subject>Costs</subject><subject>Data centers</subject><subject>Decision making</subject><subject>demand-side resources</subject><subject>Distributed generation</subject><subject>Electrical loads</subject><subject>Energy storage</subject><subject>energy storage system</subject><subject>Improve light robust</subject><subject>Load</subject><subject>Load fluctuation</subject><subject>Microbalances</subject><subject>Optimization</subject><subject>Power plants</subject><subject>Power systems</subject><subject>Renewable energy sources</subject><subject>Robustness</subject><subject>Supply &amp; demand</subject><subject>uncertainty demand</subject><subject>virtual power plant</subject><subject>Virtual power plants</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIOAL4GCJc4sfiWsfUXlVqgSiwNXa2JviKo2L41DB15MShNjLPjQzu9rJsjNGx4xRfXk1nd4sFmNOuRgLrigtJnvZEWdSj0Qh5P6_-jA7bdsV7UP1o2JylFWz9SaGD3Rk7pdviTyFsmsTedgkv_ZfkHxoyCJFSLj8JFWI5NXH1EFNHsMWI3msodmhMf5AW7L16Y3c1p3tQck3S3KNa2jcSXZQQd3i6W8-zl5ub56n96P5w91sejUf2ZzqNEKXcyrR8kLkIgerUFIlqGUoRWUFBQ66wJL3rS4tSijdhCnqhAPEXElxnM0GXRdgZTbRryF-mgDe_AxCXBqIydsaDeRcOialLQudK-e00oxVdiJcZYEWqte6GLT6B7132CazCl1s-vMNV1wwJZnebRQDysbQthGrv62Mmp0_ZvDH7Pwxv_70rPOB5RHxH4OJgupcfAPS-Y1A</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wu, Xiaomin</creator><creator>Xiong, Haozheng</creator><creator>Li, Shaoyi</creator><creator>Gan, Shengfeng</creator><creator>Hou, Changhui</creator><creator>Ding, Zhilin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3922-7491</orcidid><orcidid>https://orcid.org/0000-0002-6471-9255</orcidid></search><sort><creationdate>20230101</creationdate><title>Improved Light Robust Optimization Strategy for Virtual Power Plant Operations with Fluctuating Demand</title><author>Wu, Xiaomin ; Xiong, Haozheng ; Li, Shaoyi ; Gan, Shengfeng ; Hou, Changhui ; Ding, Zhilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-ed4206ec253434ac8e60830c1e63fc30a2a95eb2e639bce6abd7180d3daee4863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Batteries</topic><topic>Cost analysis</topic><topic>Costs</topic><topic>Data centers</topic><topic>Decision making</topic><topic>demand-side resources</topic><topic>Distributed generation</topic><topic>Electrical loads</topic><topic>Energy storage</topic><topic>energy storage system</topic><topic>Improve light robust</topic><topic>Load</topic><topic>Load fluctuation</topic><topic>Microbalances</topic><topic>Optimization</topic><topic>Power plants</topic><topic>Power systems</topic><topic>Renewable energy sources</topic><topic>Robustness</topic><topic>Supply &amp; demand</topic><topic>uncertainty demand</topic><topic>virtual power plant</topic><topic>Virtual power plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xiaomin</creatorcontrib><creatorcontrib>Xiong, Haozheng</creatorcontrib><creatorcontrib>Li, Shaoyi</creatorcontrib><creatorcontrib>Gan, Shengfeng</creatorcontrib><creatorcontrib>Hou, Changhui</creatorcontrib><creatorcontrib>Ding, Zhilin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xiaomin</au><au>Xiong, Haozheng</au><au>Li, Shaoyi</au><au>Gan, Shengfeng</au><au>Hou, Changhui</au><au>Ding, Zhilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Light Robust Optimization Strategy for Virtual Power Plant Operations with Fluctuating Demand</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Aggregating loads and resources on both the supply and demand side of a virtual power plant (VPP) can enhance coordination between distributed generation systems and the power grid, ultimately improving the utilization rate and economic benefits of renewable energy. The energy storage system (ESS) has the added benefit of flexible demand-side resources, which can effectively suppress output uncertainty of distributed units and balance load fluctuations. This paper proposes an improved light robust (ILR) optimization method for the ESS's demand-side resource, which optimizes the conservatism caused by robust optimization (RO) in solving the VPP optimal scheme, ultimately reducing running costs. By analyzing random factors in the VPP operation process, the ILR dynamically calls ESS backup power to participate in system operation when load fluctuation and output are inaccurate or uncertain, provided operational constraints are met. This approach balances both economy and optimization, ensuring the balance between supply and load fluctuates, improving the utilization rate of ESS backup power, and reducing the total operating cost of VPP operation. The case study show that the model can effectively utilize the reserve energy of the ESS to cope with the load fluctuations during normal operation of the system, improve the economy while ensuring the safe operation of the virtual power plant system, and leave some optimization space for decision-makers by utilizing the demand-side resource characteristics of the energy storage system.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3280057</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3922-7491</orcidid><orcidid>https://orcid.org/0000-0002-6471-9255</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a426d166cb5948dd98911fc73dfca058
source IEEE Xplore Open Access Journals
subjects Batteries
Cost analysis
Costs
Data centers
Decision making
demand-side resources
Distributed generation
Electrical loads
Energy storage
energy storage system
Improve light robust
Load
Load fluctuation
Microbalances
Optimization
Power plants
Power systems
Renewable energy sources
Robustness
Supply & demand
uncertainty demand
virtual power plant
Virtual power plants
title Improved Light Robust Optimization Strategy for Virtual Power Plant Operations with Fluctuating Demand
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Light%20Robust%20Optimization%20Strategy%20for%20Virtual%20Power%20Plant%20Operations%20with%20Fluctuating%20Demand&rft.jtitle=IEEE%20access&rft.au=Wu,%20Xiaomin&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3280057&rft_dat=%3Cproquest_doaj_%3E2823186196%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-ed4206ec253434ac8e60830c1e63fc30a2a95eb2e639bce6abd7180d3daee4863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2823186196&rft_id=info:pmid/&rft_ieee_id=10135094&rfr_iscdi=true