Loading…

Accelerating AdS black holes as the holographic heat engines in a benchmarking scheme

We investigate the properties of holographic heat engines with an uncharged accelerating non-rotating AdS black hole as the working substance in a benchmarking scheme. We find that the efficiencies of the black hole heat engines can be influenced by both the size of the benchmark circular cycle and...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. C, Particles and fields Particles and fields, 2018-08, Vol.78 (8), p.1-6, Article 645
Main Authors: Zhang, Jialin, Li, Yanjun, Yu, Hongwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-1fd38fdff7376674cf0434bc431a89bef1ef6d3ede026c32a4be10be3994ff3a3
cites cdi_FETCH-LOGICAL-c518t-1fd38fdff7376674cf0434bc431a89bef1ef6d3ede026c32a4be10be3994ff3a3
container_end_page 6
container_issue 8
container_start_page 1
container_title The European physical journal. C, Particles and fields
container_volume 78
creator Zhang, Jialin
Li, Yanjun
Yu, Hongwei
description We investigate the properties of holographic heat engines with an uncharged accelerating non-rotating AdS black hole as the working substance in a benchmarking scheme. We find that the efficiencies of the black hole heat engines can be influenced by both the size of the benchmark circular cycle and the cosmic string tension as a thermodynamic variable. In general, the efficiency can be increased by enlarging the cycle, but is still constrained by a universal bound 2 π / ( π + 4 ) as expected. A cross-comparison of the efficiencies of the accelerating black hole heat engines and Schwarzschild-AdS black hole heat engines suggests that the acceleration also increases the efficiency although the amount of increase is not remarkable.
doi_str_mv 10.1140/epjc/s10052-018-6137-x
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a427fc423a5d45ed8a7062d60d029a1f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A550220679</galeid><doaj_id>oai_doaj_org_article_a427fc423a5d45ed8a7062d60d029a1f</doaj_id><sourcerecordid>A550220679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-1fd38fdff7376674cf0434bc431a89bef1ef6d3ede026c32a4be10be3994ff3a3</originalsourceid><addsrcrecordid>eNqFkUtr3DAUhU1poWnav1AMXXXh5Oph2bMcQh8DgUDTrMW1dGVr4rGmkgem_75yXVKyClpIujrf4YhTFB8ZXDEm4ZqOe3OdGEDNK2BtpZhoqvOr4oJJISuVx6-fzlK-Ld6ltAcALqG9KB62xtBIEWc_9eXW3pfdiOaxHMJIqcRUzgMtl9BHPA7elAPhXNLU-ym_-6nEsqPJDAeMj4tDMgMd6H3xxuGY6MO__bJ4-Prl58336vbu2-5me1uZmrVzxZwVrbPONaJRqpHGQY7ZGSkYtpuOHCOnrCBLwJURHGVHDDoSm410TqC4LHarrw2418foc4zfOqDXfwch9hrj7M1IGiVvnJFcYG1lTbbFBhS3CizwDTKXvT6tXscYfp0ozXofTnHK8TWHtmklCMay6mpV9ZhN_eTCHNHkZengTZjI-Tzf1jVwDqrZZODzMyBrZjrPPZ5S0rv7H8-1atWaGFKK5J6-xEAvXeula712rXPXeulanzPYrGDKwNRT_J_9BfIPoYavHQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087840311</pqid></control><display><type>article</type><title>Accelerating AdS black holes as the holographic heat engines in a benchmarking scheme</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Zhang, Jialin ; Li, Yanjun ; Yu, Hongwei</creator><creatorcontrib>Zhang, Jialin ; Li, Yanjun ; Yu, Hongwei</creatorcontrib><description>We investigate the properties of holographic heat engines with an uncharged accelerating non-rotating AdS black hole as the working substance in a benchmarking scheme. We find that the efficiencies of the black hole heat engines can be influenced by both the size of the benchmark circular cycle and the cosmic string tension as a thermodynamic variable. In general, the efficiency can be increased by enlarging the cycle, but is still constrained by a universal bound 2 π / ( π + 4 ) as expected. A cross-comparison of the efficiencies of the accelerating black hole heat engines and Schwarzschild-AdS black hole heat engines suggests that the acceleration also increases the efficiency although the amount of increase is not remarkable.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-018-6137-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Advertising executives ; Astronomy ; Astrophysics and Cosmology ; Benchmarking ; Benchmarks ; Black holes ; Comparative analysis ; Elementary Particles ; Hadrons ; Heat engines ; Heavy Ions ; Measurement Science and Instrumentation ; Nuclear Energy ; Nuclear Physics ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Regular Article - Theoretical Physics ; String Theory ; Thermodynamics</subject><ispartof>The European physical journal. C, Particles and fields, 2018-08, Vol.78 (8), p.1-6, Article 645</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>The European Physical Journal C is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-1fd38fdff7376674cf0434bc431a89bef1ef6d3ede026c32a4be10be3994ff3a3</citedby><cites>FETCH-LOGICAL-c518t-1fd38fdff7376674cf0434bc431a89bef1ef6d3ede026c32a4be10be3994ff3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2087840311/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2087840311?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Zhang, Jialin</creatorcontrib><creatorcontrib>Li, Yanjun</creatorcontrib><creatorcontrib>Yu, Hongwei</creatorcontrib><title>Accelerating AdS black holes as the holographic heat engines in a benchmarking scheme</title><title>The European physical journal. C, Particles and fields</title><addtitle>Eur. Phys. J. C</addtitle><description>We investigate the properties of holographic heat engines with an uncharged accelerating non-rotating AdS black hole as the working substance in a benchmarking scheme. We find that the efficiencies of the black hole heat engines can be influenced by both the size of the benchmark circular cycle and the cosmic string tension as a thermodynamic variable. In general, the efficiency can be increased by enlarging the cycle, but is still constrained by a universal bound 2 π / ( π + 4 ) as expected. A cross-comparison of the efficiencies of the accelerating black hole heat engines and Schwarzschild-AdS black hole heat engines suggests that the acceleration also increases the efficiency although the amount of increase is not remarkable.</description><subject>Advertising executives</subject><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Benchmarking</subject><subject>Benchmarks</subject><subject>Black holes</subject><subject>Comparative analysis</subject><subject>Elementary Particles</subject><subject>Hadrons</subject><subject>Heat engines</subject><subject>Heavy Ions</subject><subject>Measurement Science and Instrumentation</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Regular Article - Theoretical Physics</subject><subject>String Theory</subject><subject>Thermodynamics</subject><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkUtr3DAUhU1poWnav1AMXXXh5Oph2bMcQh8DgUDTrMW1dGVr4rGmkgem_75yXVKyClpIujrf4YhTFB8ZXDEm4ZqOe3OdGEDNK2BtpZhoqvOr4oJJISuVx6-fzlK-Ld6ltAcALqG9KB62xtBIEWc_9eXW3pfdiOaxHMJIqcRUzgMtl9BHPA7elAPhXNLU-ym_-6nEsqPJDAeMj4tDMgMd6H3xxuGY6MO__bJ4-Prl58336vbu2-5me1uZmrVzxZwVrbPONaJRqpHGQY7ZGSkYtpuOHCOnrCBLwJURHGVHDDoSm410TqC4LHarrw2418foc4zfOqDXfwch9hrj7M1IGiVvnJFcYG1lTbbFBhS3CizwDTKXvT6tXscYfp0ozXofTnHK8TWHtmklCMay6mpV9ZhN_eTCHNHkZengTZjI-Tzf1jVwDqrZZODzMyBrZjrPPZ5S0rv7H8-1atWaGFKK5J6-xEAvXeula712rXPXeulanzPYrGDKwNRT_J_9BfIPoYavHQ</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Zhang, Jialin</creator><creator>Li, Yanjun</creator><creator>Yu, Hongwei</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20180801</creationdate><title>Accelerating AdS black holes as the holographic heat engines in a benchmarking scheme</title><author>Zhang, Jialin ; Li, Yanjun ; Yu, Hongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-1fd38fdff7376674cf0434bc431a89bef1ef6d3ede026c32a4be10be3994ff3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Advertising executives</topic><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Benchmarking</topic><topic>Benchmarks</topic><topic>Black holes</topic><topic>Comparative analysis</topic><topic>Elementary Particles</topic><topic>Hadrons</topic><topic>Heat engines</topic><topic>Heavy Ions</topic><topic>Measurement Science and Instrumentation</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Regular Article - Theoretical Physics</topic><topic>String Theory</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jialin</creatorcontrib><creatorcontrib>Li, Yanjun</creatorcontrib><creatorcontrib>Yu, Hongwei</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Science in Context</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jialin</au><au>Li, Yanjun</au><au>Yu, Hongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating AdS black holes as the holographic heat engines in a benchmarking scheme</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><stitle>Eur. Phys. J. C</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>78</volume><issue>8</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><artnum>645</artnum><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>We investigate the properties of holographic heat engines with an uncharged accelerating non-rotating AdS black hole as the working substance in a benchmarking scheme. We find that the efficiencies of the black hole heat engines can be influenced by both the size of the benchmark circular cycle and the cosmic string tension as a thermodynamic variable. In general, the efficiency can be increased by enlarging the cycle, but is still constrained by a universal bound 2 π / ( π + 4 ) as expected. A cross-comparison of the efficiencies of the accelerating black hole heat engines and Schwarzschild-AdS black hole heat engines suggests that the acceleration also increases the efficiency although the amount of increase is not remarkable.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjc/s10052-018-6137-x</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6044
ispartof The European physical journal. C, Particles and fields, 2018-08, Vol.78 (8), p.1-6, Article 645
issn 1434-6044
1434-6052
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a427fc423a5d45ed8a7062d60d029a1f
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Advertising executives
Astronomy
Astrophysics and Cosmology
Benchmarking
Benchmarks
Black holes
Comparative analysis
Elementary Particles
Hadrons
Heat engines
Heavy Ions
Measurement Science and Instrumentation
Nuclear Energy
Nuclear Physics
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Regular Article - Theoretical Physics
String Theory
Thermodynamics
title Accelerating AdS black holes as the holographic heat engines in a benchmarking scheme
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20AdS%20black%20holes%20as%20the%20holographic%20heat%20engines%20in%20a%20benchmarking%20scheme&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Zhang,%20Jialin&rft.date=2018-08-01&rft.volume=78&rft.issue=8&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.artnum=645&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-018-6137-x&rft_dat=%3Cgale_doaj_%3EA550220679%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-1fd38fdff7376674cf0434bc431a89bef1ef6d3ede026c32a4be10be3994ff3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2087840311&rft_id=info:pmid/&rft_galeid=A550220679&rfr_iscdi=true