Loading…
Efficient Gene Editing at Major CFTR Mutation Loci
Cystic fibrosis (CF) is a lethal autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Nuclease-mediated precise gene editing (PGE) represents a promising therapy for CF, for which an efficient strategy that is free of viral vector, d...
Saved in:
Published in: | Molecular therapy. Nucleic acids 2019-06, Vol.16, p.73-81 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c549t-3dd16009d860e38998c7c963d8a01e4ba6925d955b516c367ff6998ceff222cd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c549t-3dd16009d860e38998c7c963d8a01e4ba6925d955b516c367ff6998ceff222cd3 |
container_end_page | 81 |
container_issue | |
container_start_page | 73 |
container_title | Molecular therapy. Nucleic acids |
container_volume | 16 |
creator | Ruan, Jinxue Hirai, Hiroyuki Yang, Dongshan Ma, Linyuan Hou, Xia Jiang, Hong Wei, Hongguang Rajagopalan, Carthic Mou, Hongmei Wang, Guoshun Zhang, Jifeng Li, Kui Chen, Yuqing E. Sun, Fei Xu, Jie |
description | Cystic fibrosis (CF) is a lethal autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Nuclease-mediated precise gene editing (PGE) represents a promising therapy for CF, for which an efficient strategy that is free of viral vector, drug selection, and reporter enrichment (VDR free) is desirable. Here we compared different transfection methods (lipofectamine versus electroporation) and formats (plasmid DNA versus ribonucleoprotein) in delivering the CRISPR/Cas9 elements along with single-stranded oligodeoxynucleotides (ssODNs) to clinically relevant cells targeting major CFTR mutation loci. We demonstrate that, among different combinations, electroporation of CRISPR/Cas9 and guide RNA (gRNA) ribonucleoprotein (Cas9 RNP) is the most effective one. By using this VDR-free method, 4.8% to 27.2% efficiencies were achieved in creating dF508, G542X, and G551D mutations in a wild-type induced pluripotent stem cell (iPSC) line. When it is applied to a patient-derived iPSC line carrying the dF508 mutation, a greater than 20% precise correction rate was achieved. As expected, genetic correction leads to the restoration of CFTR function in iPSC-derived proximal lung organoids, as well as in a patient-derived adenocarcinoma cell line CFPAC-1. The present work demonstrates the feasibility of gene editing-based therapeutics toward monogenic diseases such as CF. |
doi_str_mv | 10.1016/j.omtn.2019.02.006 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a456badb163c4c67808cc465e0c667bc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2162253119300368</els_id><doaj_id>oai_doaj_org_article_a456badb163c4c67808cc465e0c667bc</doaj_id><sourcerecordid>2190119804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-3dd16009d860e38998c7c963d8a01e4ba6925d955b516c367ff6998ceff222cd3</originalsourceid><addsrcrecordid>eNp9kcFq3DAQhk1paUKaF-ihGHrpZd2RbI0tKIWybNLAhkJJz0IeyVsZr5VKcqBvX202DUkP1UVC-uZHM19RvGVQMWD4caz8Ps0VByYr4BUAvihOOUO-4qJmL5-cT4rzGEfIC4Fx5K-Lkxo6weu2Oy34ZhgcOTun8tLOttwYl9y8K3Uqr_XoQ7m-uPleXi9JJ-fncuvJvSleDXqK9vxhPyt-XGxu1l9X22-XV-sv2xWJRqZVbQxDAGk6BFt3UnbUksTadBqYbXqNkgsjhegFQ6qxHQY8QHYYOOdk6rPi6phrvB7VbXB7HX4rr526v_Bhp3RIjiardCOw16ZnWFND2HbQETUoLBBi21PO-nzMul36vTWU-w16ehb6_GV2P9XO3ylsQDbQ5IAPDwHB_1psTGrvItlp0rP1S1ScSWBMdvfo-3_Q0S9hzqNSPA--YQJRZoofKQo-xmCHx88wUAfDKreYDauDYQVcZX256N3TNh5L_vrMwKcjYLOYO2eDige5ZI0LllKenPtf_h9fybSK</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308415669</pqid></control><display><type>article</type><title>Efficient Gene Editing at Major CFTR Mutation Loci</title><source>Open Access: PubMed Central</source><source>ScienceDirect Journals</source><source>ProQuest - Publicly Available Content Database</source><creator>Ruan, Jinxue ; Hirai, Hiroyuki ; Yang, Dongshan ; Ma, Linyuan ; Hou, Xia ; Jiang, Hong ; Wei, Hongguang ; Rajagopalan, Carthic ; Mou, Hongmei ; Wang, Guoshun ; Zhang, Jifeng ; Li, Kui ; Chen, Yuqing E. ; Sun, Fei ; Xu, Jie</creator><creatorcontrib>Ruan, Jinxue ; Hirai, Hiroyuki ; Yang, Dongshan ; Ma, Linyuan ; Hou, Xia ; Jiang, Hong ; Wei, Hongguang ; Rajagopalan, Carthic ; Mou, Hongmei ; Wang, Guoshun ; Zhang, Jifeng ; Li, Kui ; Chen, Yuqing E. ; Sun, Fei ; Xu, Jie</creatorcontrib><description>Cystic fibrosis (CF) is a lethal autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Nuclease-mediated precise gene editing (PGE) represents a promising therapy for CF, for which an efficient strategy that is free of viral vector, drug selection, and reporter enrichment (VDR free) is desirable. Here we compared different transfection methods (lipofectamine versus electroporation) and formats (plasmid DNA versus ribonucleoprotein) in delivering the CRISPR/Cas9 elements along with single-stranded oligodeoxynucleotides (ssODNs) to clinically relevant cells targeting major CFTR mutation loci. We demonstrate that, among different combinations, electroporation of CRISPR/Cas9 and guide RNA (gRNA) ribonucleoprotein (Cas9 RNP) is the most effective one. By using this VDR-free method, 4.8% to 27.2% efficiencies were achieved in creating dF508, G542X, and G551D mutations in a wild-type induced pluripotent stem cell (iPSC) line. When it is applied to a patient-derived iPSC line carrying the dF508 mutation, a greater than 20% precise correction rate was achieved. As expected, genetic correction leads to the restoration of CFTR function in iPSC-derived proximal lung organoids, as well as in a patient-derived adenocarcinoma cell line CFPAC-1. The present work demonstrates the feasibility of gene editing-based therapeutics toward monogenic diseases such as CF.</description><identifier>ISSN: 2162-2531</identifier><identifier>EISSN: 2162-2531</identifier><identifier>DOI: 10.1016/j.omtn.2019.02.006</identifier><identifier>PMID: 30852378</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenocarcinoma ; Conductance ; CRISPR ; Cystic fibrosis ; Deoxyribonucleic acid ; Disease ; DNA ; Efficiency ; Electroporation ; Experiments ; Genome editing ; gRNA ; Mutation ; Nuclease ; Oligonucleotides ; Organoids ; Pluripotency ; Ribonucleic acid ; RNA ; Statistical analysis ; Stem cells ; Transfection</subject><ispartof>Molecular therapy. Nucleic acids, 2019-06, Vol.16, p.73-81</ispartof><rights>2019 The Authors</rights><rights>Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2019. The Authors</rights><rights>2019 The Authors 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-3dd16009d860e38998c7c963d8a01e4ba6925d955b516c367ff6998ceff222cd3</citedby><cites>FETCH-LOGICAL-c549t-3dd16009d860e38998c7c963d8a01e4ba6925d955b516c367ff6998ceff222cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409404/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2308415669?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,25753,27924,27925,37012,37013,44590,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30852378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruan, Jinxue</creatorcontrib><creatorcontrib>Hirai, Hiroyuki</creatorcontrib><creatorcontrib>Yang, Dongshan</creatorcontrib><creatorcontrib>Ma, Linyuan</creatorcontrib><creatorcontrib>Hou, Xia</creatorcontrib><creatorcontrib>Jiang, Hong</creatorcontrib><creatorcontrib>Wei, Hongguang</creatorcontrib><creatorcontrib>Rajagopalan, Carthic</creatorcontrib><creatorcontrib>Mou, Hongmei</creatorcontrib><creatorcontrib>Wang, Guoshun</creatorcontrib><creatorcontrib>Zhang, Jifeng</creatorcontrib><creatorcontrib>Li, Kui</creatorcontrib><creatorcontrib>Chen, Yuqing E.</creatorcontrib><creatorcontrib>Sun, Fei</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><title>Efficient Gene Editing at Major CFTR Mutation Loci</title><title>Molecular therapy. Nucleic acids</title><addtitle>Mol Ther Nucleic Acids</addtitle><description>Cystic fibrosis (CF) is a lethal autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Nuclease-mediated precise gene editing (PGE) represents a promising therapy for CF, for which an efficient strategy that is free of viral vector, drug selection, and reporter enrichment (VDR free) is desirable. Here we compared different transfection methods (lipofectamine versus electroporation) and formats (plasmid DNA versus ribonucleoprotein) in delivering the CRISPR/Cas9 elements along with single-stranded oligodeoxynucleotides (ssODNs) to clinically relevant cells targeting major CFTR mutation loci. We demonstrate that, among different combinations, electroporation of CRISPR/Cas9 and guide RNA (gRNA) ribonucleoprotein (Cas9 RNP) is the most effective one. By using this VDR-free method, 4.8% to 27.2% efficiencies were achieved in creating dF508, G542X, and G551D mutations in a wild-type induced pluripotent stem cell (iPSC) line. When it is applied to a patient-derived iPSC line carrying the dF508 mutation, a greater than 20% precise correction rate was achieved. As expected, genetic correction leads to the restoration of CFTR function in iPSC-derived proximal lung organoids, as well as in a patient-derived adenocarcinoma cell line CFPAC-1. The present work demonstrates the feasibility of gene editing-based therapeutics toward monogenic diseases such as CF.</description><subject>Adenocarcinoma</subject><subject>Conductance</subject><subject>CRISPR</subject><subject>Cystic fibrosis</subject><subject>Deoxyribonucleic acid</subject><subject>Disease</subject><subject>DNA</subject><subject>Efficiency</subject><subject>Electroporation</subject><subject>Experiments</subject><subject>Genome editing</subject><subject>gRNA</subject><subject>Mutation</subject><subject>Nuclease</subject><subject>Oligonucleotides</subject><subject>Organoids</subject><subject>Pluripotency</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Statistical analysis</subject><subject>Stem cells</subject><subject>Transfection</subject><issn>2162-2531</issn><issn>2162-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kcFq3DAQhk1paUKaF-ihGHrpZd2RbI0tKIWybNLAhkJJz0IeyVsZr5VKcqBvX202DUkP1UVC-uZHM19RvGVQMWD4caz8Ps0VByYr4BUAvihOOUO-4qJmL5-cT4rzGEfIC4Fx5K-Lkxo6weu2Oy34ZhgcOTun8tLOttwYl9y8K3Uqr_XoQ7m-uPleXi9JJ-fncuvJvSleDXqK9vxhPyt-XGxu1l9X22-XV-sv2xWJRqZVbQxDAGk6BFt3UnbUksTadBqYbXqNkgsjhegFQ6qxHQY8QHYYOOdk6rPi6phrvB7VbXB7HX4rr526v_Bhp3RIjiardCOw16ZnWFND2HbQETUoLBBi21PO-nzMul36vTWU-w16ehb6_GV2P9XO3ylsQDbQ5IAPDwHB_1psTGrvItlp0rP1S1ScSWBMdvfo-3_Q0S9hzqNSPA--YQJRZoofKQo-xmCHx88wUAfDKreYDauDYQVcZX256N3TNh5L_vrMwKcjYLOYO2eDige5ZI0LllKenPtf_h9fybSK</recordid><startdate>20190607</startdate><enddate>20190607</enddate><creator>Ruan, Jinxue</creator><creator>Hirai, Hiroyuki</creator><creator>Yang, Dongshan</creator><creator>Ma, Linyuan</creator><creator>Hou, Xia</creator><creator>Jiang, Hong</creator><creator>Wei, Hongguang</creator><creator>Rajagopalan, Carthic</creator><creator>Mou, Hongmei</creator><creator>Wang, Guoshun</creator><creator>Zhang, Jifeng</creator><creator>Li, Kui</creator><creator>Chen, Yuqing E.</creator><creator>Sun, Fei</creator><creator>Xu, Jie</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>American Society of Gene & Cell Therapy</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20190607</creationdate><title>Efficient Gene Editing at Major CFTR Mutation Loci</title><author>Ruan, Jinxue ; Hirai, Hiroyuki ; Yang, Dongshan ; Ma, Linyuan ; Hou, Xia ; Jiang, Hong ; Wei, Hongguang ; Rajagopalan, Carthic ; Mou, Hongmei ; Wang, Guoshun ; Zhang, Jifeng ; Li, Kui ; Chen, Yuqing E. ; Sun, Fei ; Xu, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-3dd16009d860e38998c7c963d8a01e4ba6925d955b516c367ff6998ceff222cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adenocarcinoma</topic><topic>Conductance</topic><topic>CRISPR</topic><topic>Cystic fibrosis</topic><topic>Deoxyribonucleic acid</topic><topic>Disease</topic><topic>DNA</topic><topic>Efficiency</topic><topic>Electroporation</topic><topic>Experiments</topic><topic>Genome editing</topic><topic>gRNA</topic><topic>Mutation</topic><topic>Nuclease</topic><topic>Oligonucleotides</topic><topic>Organoids</topic><topic>Pluripotency</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Statistical analysis</topic><topic>Stem cells</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruan, Jinxue</creatorcontrib><creatorcontrib>Hirai, Hiroyuki</creatorcontrib><creatorcontrib>Yang, Dongshan</creatorcontrib><creatorcontrib>Ma, Linyuan</creatorcontrib><creatorcontrib>Hou, Xia</creatorcontrib><creatorcontrib>Jiang, Hong</creatorcontrib><creatorcontrib>Wei, Hongguang</creatorcontrib><creatorcontrib>Rajagopalan, Carthic</creatorcontrib><creatorcontrib>Mou, Hongmei</creatorcontrib><creatorcontrib>Wang, Guoshun</creatorcontrib><creatorcontrib>Zhang, Jifeng</creatorcontrib><creatorcontrib>Li, Kui</creatorcontrib><creatorcontrib>Chen, Yuqing E.</creatorcontrib><creatorcontrib>Sun, Fei</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Health & Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Molecular therapy. Nucleic acids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruan, Jinxue</au><au>Hirai, Hiroyuki</au><au>Yang, Dongshan</au><au>Ma, Linyuan</au><au>Hou, Xia</au><au>Jiang, Hong</au><au>Wei, Hongguang</au><au>Rajagopalan, Carthic</au><au>Mou, Hongmei</au><au>Wang, Guoshun</au><au>Zhang, Jifeng</au><au>Li, Kui</au><au>Chen, Yuqing E.</au><au>Sun, Fei</au><au>Xu, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Gene Editing at Major CFTR Mutation Loci</atitle><jtitle>Molecular therapy. Nucleic acids</jtitle><addtitle>Mol Ther Nucleic Acids</addtitle><date>2019-06-07</date><risdate>2019</risdate><volume>16</volume><spage>73</spage><epage>81</epage><pages>73-81</pages><issn>2162-2531</issn><eissn>2162-2531</eissn><abstract>Cystic fibrosis (CF) is a lethal autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Nuclease-mediated precise gene editing (PGE) represents a promising therapy for CF, for which an efficient strategy that is free of viral vector, drug selection, and reporter enrichment (VDR free) is desirable. Here we compared different transfection methods (lipofectamine versus electroporation) and formats (plasmid DNA versus ribonucleoprotein) in delivering the CRISPR/Cas9 elements along with single-stranded oligodeoxynucleotides (ssODNs) to clinically relevant cells targeting major CFTR mutation loci. We demonstrate that, among different combinations, electroporation of CRISPR/Cas9 and guide RNA (gRNA) ribonucleoprotein (Cas9 RNP) is the most effective one. By using this VDR-free method, 4.8% to 27.2% efficiencies were achieved in creating dF508, G542X, and G551D mutations in a wild-type induced pluripotent stem cell (iPSC) line. When it is applied to a patient-derived iPSC line carrying the dF508 mutation, a greater than 20% precise correction rate was achieved. As expected, genetic correction leads to the restoration of CFTR function in iPSC-derived proximal lung organoids, as well as in a patient-derived adenocarcinoma cell line CFPAC-1. The present work demonstrates the feasibility of gene editing-based therapeutics toward monogenic diseases such as CF.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30852378</pmid><doi>10.1016/j.omtn.2019.02.006</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-2531 |
ispartof | Molecular therapy. Nucleic acids, 2019-06, Vol.16, p.73-81 |
issn | 2162-2531 2162-2531 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a456badb163c4c67808cc465e0c667bc |
source | Open Access: PubMed Central; ScienceDirect Journals; ProQuest - Publicly Available Content Database |
subjects | Adenocarcinoma Conductance CRISPR Cystic fibrosis Deoxyribonucleic acid Disease DNA Efficiency Electroporation Experiments Genome editing gRNA Mutation Nuclease Oligonucleotides Organoids Pluripotency Ribonucleic acid RNA Statistical analysis Stem cells Transfection |
title | Efficient Gene Editing at Major CFTR Mutation Loci |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A13%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Gene%20Editing%20at%20Major%20CFTR%20Mutation%20Loci&rft.jtitle=Molecular%20therapy.%20Nucleic%20acids&rft.au=Ruan,%20Jinxue&rft.date=2019-06-07&rft.volume=16&rft.spage=73&rft.epage=81&rft.pages=73-81&rft.issn=2162-2531&rft.eissn=2162-2531&rft_id=info:doi/10.1016/j.omtn.2019.02.006&rft_dat=%3Cproquest_doaj_%3E2190119804%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c549t-3dd16009d860e38998c7c963d8a01e4ba6925d955b516c367ff6998ceff222cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2308415669&rft_id=info:pmid/30852378&rfr_iscdi=true |