Loading…

Metabolomic analysis of mouse prefrontal cortex reveals upregulated analytes during wakefulness compared to sleep

By identifying endogenous molecules in brain extracellular fluid metabolomics can provide insight into the regulatory mechanisms and functions of sleep. Here we studied how the cortical metabolome changes during sleep, sleep deprivation and spontaneous wakefulness. Mice were implanted with electrode...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2018-07, Vol.8 (1), p.11225-17, Article 11225
Main Authors: Bourdon, Allen K., Spano, Giovanna Maria, Marshall, William, Bellesi, Michele, Tononi, Giulio, Serra, Pier Andrea, Baghdoyan, Helen A., Lydic, Ralph, Campagna, Shawn R., Cirelli, Chiara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c606t-f1cbb4cc867cc3c2f488e438db98e51d84b75b0392277de2ec42eee0f140f5443
cites cdi_FETCH-LOGICAL-c606t-f1cbb4cc867cc3c2f488e438db98e51d84b75b0392277de2ec42eee0f140f5443
container_end_page 17
container_issue 1
container_start_page 11225
container_title Scientific reports
container_volume 8
creator Bourdon, Allen K.
Spano, Giovanna Maria
Marshall, William
Bellesi, Michele
Tononi, Giulio
Serra, Pier Andrea
Baghdoyan, Helen A.
Lydic, Ralph
Campagna, Shawn R.
Cirelli, Chiara
description By identifying endogenous molecules in brain extracellular fluid metabolomics can provide insight into the regulatory mechanisms and functions of sleep. Here we studied how the cortical metabolome changes during sleep, sleep deprivation and spontaneous wakefulness. Mice were implanted with electrodes for chronic sleep/wake recording and with microdialysis probes targeting prefrontal and primary motor cortex. Metabolites were measured using ultra performance liquid chromatography-high resolution mass spectrometry. Sleep/wake changes in metabolites were evaluated using partial least squares discriminant analysis, linear mixed effects model analysis of variance, and machine-learning algorithms. More than 30 known metabolites were reliably detected in most samples. When used by a logistic regression classifier, the profile of these metabolites across sleep, spontaneous wake, and enforced wake was sufficient to assign mice to their correct experimental group (pair-wise) in 80–100% of cases. Eleven of these metabolites showed significantly higher levels in awake than in sleeping mice. Some changes extend previous findings (glutamate, homovanillic acid, lactate, pyruvate, tryptophan, uridine), while others are novel (D-gluconate, N-acetyl-beta-alanine, N-acetylglutamine, orotate, succinate/methylmalonate). The upregulation of the de novo pyrimidine pathway, gluconate shunt and aerobic glycolysis may reflect a wake-dependent need to promote the synthesis of many essential components, from nucleic acids to synaptic membranes.
doi_str_mv 10.1038/s41598-018-29511-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a457f0f7191f427aa96a87048d92199f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a457f0f7191f427aa96a87048d92199f</doaj_id><sourcerecordid>2076897771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-f1cbb4cc867cc3c2f488e438db98e51d84b75b0392277de2ec42eee0f140f5443</originalsourceid><addsrcrecordid>eNp9ksFuFiEUhYnR2Kb2BVwYEjduRoGBATYmptHapMaNrgnDXH7nlxmmwFT79qWdWlsXsoHAOR9w70HoJSVvKWnVu8yp0KohVDVMC0qb7gk6ZISLhrWMPX2wPkDHOe9JHYJpTvVzdNASwrvqP0QXX6DYPoY4jQ7b2YarPGYcPZ7imgEvCXyKc7EBu5gK_MYJLsGGjNd6tFuDLTBsvgIZD2sa5x3-ZX-CX8MMOVfbtNhURSXiHACWF-iZrwA4vpuP0PdPH7-dfG7Ov56enXw4b1xHutJ46vqeO6c66VzrmOdKAW_V0GsFgg6K91L0pNWMSTkAA8cZABBPOfGC8_YInW3cIdq9WdI42XRloh3N7UZMO2NTGV0AY7mQnnhJNfWcSWt1Z5UkXA2aUa19Zb3fWMvaTzA4mEuy4RH08ck8_jC7eGnqVwgVrALe3AFSvFghFzON2UEIdoZaaMOI7JSWUtIqff2PdB_XVCu8qRgjWpOqYpvKpZhz7dL9YygxNwExW0BMDYi5DYjpqunVw2_cW_7EoQraTZCXm0ZC-nv3f7DXvM7Iqw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076220990</pqid></control><display><type>article</type><title>Metabolomic analysis of mouse prefrontal cortex reveals upregulated analytes during wakefulness compared to sleep</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Bourdon, Allen K. ; Spano, Giovanna Maria ; Marshall, William ; Bellesi, Michele ; Tononi, Giulio ; Serra, Pier Andrea ; Baghdoyan, Helen A. ; Lydic, Ralph ; Campagna, Shawn R. ; Cirelli, Chiara</creator><creatorcontrib>Bourdon, Allen K. ; Spano, Giovanna Maria ; Marshall, William ; Bellesi, Michele ; Tononi, Giulio ; Serra, Pier Andrea ; Baghdoyan, Helen A. ; Lydic, Ralph ; Campagna, Shawn R. ; Cirelli, Chiara</creatorcontrib><description>By identifying endogenous molecules in brain extracellular fluid metabolomics can provide insight into the regulatory mechanisms and functions of sleep. Here we studied how the cortical metabolome changes during sleep, sleep deprivation and spontaneous wakefulness. Mice were implanted with electrodes for chronic sleep/wake recording and with microdialysis probes targeting prefrontal and primary motor cortex. Metabolites were measured using ultra performance liquid chromatography-high resolution mass spectrometry. Sleep/wake changes in metabolites were evaluated using partial least squares discriminant analysis, linear mixed effects model analysis of variance, and machine-learning algorithms. More than 30 known metabolites were reliably detected in most samples. When used by a logistic regression classifier, the profile of these metabolites across sleep, spontaneous wake, and enforced wake was sufficient to assign mice to their correct experimental group (pair-wise) in 80–100% of cases. Eleven of these metabolites showed significantly higher levels in awake than in sleeping mice. Some changes extend previous findings (glutamate, homovanillic acid, lactate, pyruvate, tryptophan, uridine), while others are novel (D-gluconate, N-acetyl-beta-alanine, N-acetylglutamine, orotate, succinate/methylmalonate). The upregulation of the de novo pyrimidine pathway, gluconate shunt and aerobic glycolysis may reflect a wake-dependent need to promote the synthesis of many essential components, from nucleic acids to synaptic membranes.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-29511-6</identifier><identifier>PMID: 30046159</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/1385/1877 ; 631/378/1385/519 ; 64/60 ; 82/58 ; Alanine ; Animals ; Cortex (motor) ; Discriminant analysis ; Glutamic Acid - metabolism ; Glycolysis ; Homovanillic acid ; Homovanillic Acid - metabolism ; Humanities and Social Sciences ; Humans ; Lactic acid ; Lactic Acid - metabolism ; Learning algorithms ; Liquid chromatography ; Mass spectrometry ; Mass spectroscopy ; Metabolites ; Metabolomics ; Mice ; Microdialysis ; Motor Cortex - metabolism ; Motor Cortex - physiopathology ; multidisciplinary ; Nucleic acids ; Prefrontal cortex ; Prefrontal Cortex - metabolism ; Prefrontal Cortex - physiopathology ; Pyruvic acid ; Pyruvic Acid - metabolism ; Rodents ; Science ; Science (multidisciplinary) ; Sleep ; Sleep - physiology ; Sleep and wakefulness ; Sleep deprivation ; Sleep Deprivation - metabolism ; Sleep Deprivation - physiopathology ; Synaptic membranes ; Tryptophan ; Tryptophan - metabolism ; Uridine ; Uridine - metabolism ; Variance analysis ; Wakefulness - physiology</subject><ispartof>Scientific reports, 2018-07, Vol.8 (1), p.11225-17, Article 11225</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-f1cbb4cc867cc3c2f488e438db98e51d84b75b0392277de2ec42eee0f140f5443</citedby><cites>FETCH-LOGICAL-c606t-f1cbb4cc867cc3c2f488e438db98e51d84b75b0392277de2ec42eee0f140f5443</cites><orcidid>0000-0003-0627-2448 ; 0000-0002-9373-1130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2076220990/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2076220990?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30046159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bourdon, Allen K.</creatorcontrib><creatorcontrib>Spano, Giovanna Maria</creatorcontrib><creatorcontrib>Marshall, William</creatorcontrib><creatorcontrib>Bellesi, Michele</creatorcontrib><creatorcontrib>Tononi, Giulio</creatorcontrib><creatorcontrib>Serra, Pier Andrea</creatorcontrib><creatorcontrib>Baghdoyan, Helen A.</creatorcontrib><creatorcontrib>Lydic, Ralph</creatorcontrib><creatorcontrib>Campagna, Shawn R.</creatorcontrib><creatorcontrib>Cirelli, Chiara</creatorcontrib><title>Metabolomic analysis of mouse prefrontal cortex reveals upregulated analytes during wakefulness compared to sleep</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>By identifying endogenous molecules in brain extracellular fluid metabolomics can provide insight into the regulatory mechanisms and functions of sleep. Here we studied how the cortical metabolome changes during sleep, sleep deprivation and spontaneous wakefulness. Mice were implanted with electrodes for chronic sleep/wake recording and with microdialysis probes targeting prefrontal and primary motor cortex. Metabolites were measured using ultra performance liquid chromatography-high resolution mass spectrometry. Sleep/wake changes in metabolites were evaluated using partial least squares discriminant analysis, linear mixed effects model analysis of variance, and machine-learning algorithms. More than 30 known metabolites were reliably detected in most samples. When used by a logistic regression classifier, the profile of these metabolites across sleep, spontaneous wake, and enforced wake was sufficient to assign mice to their correct experimental group (pair-wise) in 80–100% of cases. Eleven of these metabolites showed significantly higher levels in awake than in sleeping mice. Some changes extend previous findings (glutamate, homovanillic acid, lactate, pyruvate, tryptophan, uridine), while others are novel (D-gluconate, N-acetyl-beta-alanine, N-acetylglutamine, orotate, succinate/methylmalonate). The upregulation of the de novo pyrimidine pathway, gluconate shunt and aerobic glycolysis may reflect a wake-dependent need to promote the synthesis of many essential components, from nucleic acids to synaptic membranes.</description><subject>631/378/1385/1877</subject><subject>631/378/1385/519</subject><subject>64/60</subject><subject>82/58</subject><subject>Alanine</subject><subject>Animals</subject><subject>Cortex (motor)</subject><subject>Discriminant analysis</subject><subject>Glutamic Acid - metabolism</subject><subject>Glycolysis</subject><subject>Homovanillic acid</subject><subject>Homovanillic Acid - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Lactic acid</subject><subject>Lactic Acid - metabolism</subject><subject>Learning algorithms</subject><subject>Liquid chromatography</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Mice</subject><subject>Microdialysis</subject><subject>Motor Cortex - metabolism</subject><subject>Motor Cortex - physiopathology</subject><subject>multidisciplinary</subject><subject>Nucleic acids</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Prefrontal Cortex - physiopathology</subject><subject>Pyruvic acid</subject><subject>Pyruvic Acid - metabolism</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sleep</subject><subject>Sleep - physiology</subject><subject>Sleep and wakefulness</subject><subject>Sleep deprivation</subject><subject>Sleep Deprivation - metabolism</subject><subject>Sleep Deprivation - physiopathology</subject><subject>Synaptic membranes</subject><subject>Tryptophan</subject><subject>Tryptophan - metabolism</subject><subject>Uridine</subject><subject>Uridine - metabolism</subject><subject>Variance analysis</subject><subject>Wakefulness - physiology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ksFuFiEUhYnR2Kb2BVwYEjduRoGBATYmptHapMaNrgnDXH7nlxmmwFT79qWdWlsXsoHAOR9w70HoJSVvKWnVu8yp0KohVDVMC0qb7gk6ZISLhrWMPX2wPkDHOe9JHYJpTvVzdNASwrvqP0QXX6DYPoY4jQ7b2YarPGYcPZ7imgEvCXyKc7EBu5gK_MYJLsGGjNd6tFuDLTBsvgIZD2sa5x3-ZX-CX8MMOVfbtNhURSXiHACWF-iZrwA4vpuP0PdPH7-dfG7Ov56enXw4b1xHutJ46vqeO6c66VzrmOdKAW_V0GsFgg6K91L0pNWMSTkAA8cZABBPOfGC8_YInW3cIdq9WdI42XRloh3N7UZMO2NTGV0AY7mQnnhJNfWcSWt1Z5UkXA2aUa19Zb3fWMvaTzA4mEuy4RH08ck8_jC7eGnqVwgVrALe3AFSvFghFzON2UEIdoZaaMOI7JSWUtIqff2PdB_XVCu8qRgjWpOqYpvKpZhz7dL9YygxNwExW0BMDYi5DYjpqunVw2_cW_7EoQraTZCXm0ZC-nv3f7DXvM7Iqw</recordid><startdate>20180725</startdate><enddate>20180725</enddate><creator>Bourdon, Allen K.</creator><creator>Spano, Giovanna Maria</creator><creator>Marshall, William</creator><creator>Bellesi, Michele</creator><creator>Tononi, Giulio</creator><creator>Serra, Pier Andrea</creator><creator>Baghdoyan, Helen A.</creator><creator>Lydic, Ralph</creator><creator>Campagna, Shawn R.</creator><creator>Cirelli, Chiara</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0627-2448</orcidid><orcidid>https://orcid.org/0000-0002-9373-1130</orcidid></search><sort><creationdate>20180725</creationdate><title>Metabolomic analysis of mouse prefrontal cortex reveals upregulated analytes during wakefulness compared to sleep</title><author>Bourdon, Allen K. ; Spano, Giovanna Maria ; Marshall, William ; Bellesi, Michele ; Tononi, Giulio ; Serra, Pier Andrea ; Baghdoyan, Helen A. ; Lydic, Ralph ; Campagna, Shawn R. ; Cirelli, Chiara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-f1cbb4cc867cc3c2f488e438db98e51d84b75b0392277de2ec42eee0f140f5443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/378/1385/1877</topic><topic>631/378/1385/519</topic><topic>64/60</topic><topic>82/58</topic><topic>Alanine</topic><topic>Animals</topic><topic>Cortex (motor)</topic><topic>Discriminant analysis</topic><topic>Glutamic Acid - metabolism</topic><topic>Glycolysis</topic><topic>Homovanillic acid</topic><topic>Homovanillic Acid - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Lactic acid</topic><topic>Lactic Acid - metabolism</topic><topic>Learning algorithms</topic><topic>Liquid chromatography</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Mice</topic><topic>Microdialysis</topic><topic>Motor Cortex - metabolism</topic><topic>Motor Cortex - physiopathology</topic><topic>multidisciplinary</topic><topic>Nucleic acids</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Prefrontal Cortex - physiopathology</topic><topic>Pyruvic acid</topic><topic>Pyruvic Acid - metabolism</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sleep</topic><topic>Sleep - physiology</topic><topic>Sleep and wakefulness</topic><topic>Sleep deprivation</topic><topic>Sleep Deprivation - metabolism</topic><topic>Sleep Deprivation - physiopathology</topic><topic>Synaptic membranes</topic><topic>Tryptophan</topic><topic>Tryptophan - metabolism</topic><topic>Uridine</topic><topic>Uridine - metabolism</topic><topic>Variance analysis</topic><topic>Wakefulness - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourdon, Allen K.</creatorcontrib><creatorcontrib>Spano, Giovanna Maria</creatorcontrib><creatorcontrib>Marshall, William</creatorcontrib><creatorcontrib>Bellesi, Michele</creatorcontrib><creatorcontrib>Tononi, Giulio</creatorcontrib><creatorcontrib>Serra, Pier Andrea</creatorcontrib><creatorcontrib>Baghdoyan, Helen A.</creatorcontrib><creatorcontrib>Lydic, Ralph</creatorcontrib><creatorcontrib>Campagna, Shawn R.</creatorcontrib><creatorcontrib>Cirelli, Chiara</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourdon, Allen K.</au><au>Spano, Giovanna Maria</au><au>Marshall, William</au><au>Bellesi, Michele</au><au>Tononi, Giulio</au><au>Serra, Pier Andrea</au><au>Baghdoyan, Helen A.</au><au>Lydic, Ralph</au><au>Campagna, Shawn R.</au><au>Cirelli, Chiara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolomic analysis of mouse prefrontal cortex reveals upregulated analytes during wakefulness compared to sleep</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-07-25</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>11225</spage><epage>17</epage><pages>11225-17</pages><artnum>11225</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>By identifying endogenous molecules in brain extracellular fluid metabolomics can provide insight into the regulatory mechanisms and functions of sleep. Here we studied how the cortical metabolome changes during sleep, sleep deprivation and spontaneous wakefulness. Mice were implanted with electrodes for chronic sleep/wake recording and with microdialysis probes targeting prefrontal and primary motor cortex. Metabolites were measured using ultra performance liquid chromatography-high resolution mass spectrometry. Sleep/wake changes in metabolites were evaluated using partial least squares discriminant analysis, linear mixed effects model analysis of variance, and machine-learning algorithms. More than 30 known metabolites were reliably detected in most samples. When used by a logistic regression classifier, the profile of these metabolites across sleep, spontaneous wake, and enforced wake was sufficient to assign mice to their correct experimental group (pair-wise) in 80–100% of cases. Eleven of these metabolites showed significantly higher levels in awake than in sleeping mice. Some changes extend previous findings (glutamate, homovanillic acid, lactate, pyruvate, tryptophan, uridine), while others are novel (D-gluconate, N-acetyl-beta-alanine, N-acetylglutamine, orotate, succinate/methylmalonate). The upregulation of the de novo pyrimidine pathway, gluconate shunt and aerobic glycolysis may reflect a wake-dependent need to promote the synthesis of many essential components, from nucleic acids to synaptic membranes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30046159</pmid><doi>10.1038/s41598-018-29511-6</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0627-2448</orcidid><orcidid>https://orcid.org/0000-0002-9373-1130</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-07, Vol.8 (1), p.11225-17, Article 11225
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a457f0f7191f427aa96a87048d92199f
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/378/1385/1877
631/378/1385/519
64/60
82/58
Alanine
Animals
Cortex (motor)
Discriminant analysis
Glutamic Acid - metabolism
Glycolysis
Homovanillic acid
Homovanillic Acid - metabolism
Humanities and Social Sciences
Humans
Lactic acid
Lactic Acid - metabolism
Learning algorithms
Liquid chromatography
Mass spectrometry
Mass spectroscopy
Metabolites
Metabolomics
Mice
Microdialysis
Motor Cortex - metabolism
Motor Cortex - physiopathology
multidisciplinary
Nucleic acids
Prefrontal cortex
Prefrontal Cortex - metabolism
Prefrontal Cortex - physiopathology
Pyruvic acid
Pyruvic Acid - metabolism
Rodents
Science
Science (multidisciplinary)
Sleep
Sleep - physiology
Sleep and wakefulness
Sleep deprivation
Sleep Deprivation - metabolism
Sleep Deprivation - physiopathology
Synaptic membranes
Tryptophan
Tryptophan - metabolism
Uridine
Uridine - metabolism
Variance analysis
Wakefulness - physiology
title Metabolomic analysis of mouse prefrontal cortex reveals upregulated analytes during wakefulness compared to sleep
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolomic%20analysis%20of%20mouse%20prefrontal%20cortex%20reveals%20upregulated%20analytes%20during%20wakefulness%20compared%20to%20sleep&rft.jtitle=Scientific%20reports&rft.au=Bourdon,%20Allen%20K.&rft.date=2018-07-25&rft.volume=8&rft.issue=1&rft.spage=11225&rft.epage=17&rft.pages=11225-17&rft.artnum=11225&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-29511-6&rft_dat=%3Cproquest_doaj_%3E2076897771%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-f1cbb4cc867cc3c2f488e438db98e51d84b75b0392277de2ec42eee0f140f5443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076220990&rft_id=info:pmid/30046159&rfr_iscdi=true