Loading…
Metabolomic analysis of mouse prefrontal cortex reveals upregulated analytes during wakefulness compared to sleep
By identifying endogenous molecules in brain extracellular fluid metabolomics can provide insight into the regulatory mechanisms and functions of sleep. Here we studied how the cortical metabolome changes during sleep, sleep deprivation and spontaneous wakefulness. Mice were implanted with electrode...
Saved in:
Published in: | Scientific reports 2018-07, Vol.8 (1), p.11225-17, Article 11225 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c606t-f1cbb4cc867cc3c2f488e438db98e51d84b75b0392277de2ec42eee0f140f5443 |
---|---|
cites | cdi_FETCH-LOGICAL-c606t-f1cbb4cc867cc3c2f488e438db98e51d84b75b0392277de2ec42eee0f140f5443 |
container_end_page | 17 |
container_issue | 1 |
container_start_page | 11225 |
container_title | Scientific reports |
container_volume | 8 |
creator | Bourdon, Allen K. Spano, Giovanna Maria Marshall, William Bellesi, Michele Tononi, Giulio Serra, Pier Andrea Baghdoyan, Helen A. Lydic, Ralph Campagna, Shawn R. Cirelli, Chiara |
description | By identifying endogenous molecules in brain extracellular fluid metabolomics can provide insight into the regulatory mechanisms and functions of sleep. Here we studied how the cortical metabolome changes during sleep, sleep deprivation and spontaneous wakefulness. Mice were implanted with electrodes for chronic sleep/wake recording and with microdialysis probes targeting prefrontal and primary motor cortex. Metabolites were measured using ultra performance liquid chromatography-high resolution mass spectrometry. Sleep/wake changes in metabolites were evaluated using partial least squares discriminant analysis, linear mixed effects model analysis of variance, and machine-learning algorithms. More than 30 known metabolites were reliably detected in most samples. When used by a logistic regression classifier, the profile of these metabolites across sleep, spontaneous wake, and enforced wake was sufficient to assign mice to their correct experimental group (pair-wise) in 80–100% of cases. Eleven of these metabolites showed significantly higher levels in awake than in sleeping mice. Some changes extend previous findings (glutamate, homovanillic acid, lactate, pyruvate, tryptophan, uridine), while others are novel (D-gluconate, N-acetyl-beta-alanine, N-acetylglutamine, orotate, succinate/methylmalonate). The upregulation of the
de novo
pyrimidine pathway, gluconate shunt and aerobic glycolysis may reflect a wake-dependent need to promote the synthesis of many essential components, from nucleic acids to synaptic membranes. |
doi_str_mv | 10.1038/s41598-018-29511-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a457f0f7191f427aa96a87048d92199f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a457f0f7191f427aa96a87048d92199f</doaj_id><sourcerecordid>2076897771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-f1cbb4cc867cc3c2f488e438db98e51d84b75b0392277de2ec42eee0f140f5443</originalsourceid><addsrcrecordid>eNp9ksFuFiEUhYnR2Kb2BVwYEjduRoGBATYmptHapMaNrgnDXH7nlxmmwFT79qWdWlsXsoHAOR9w70HoJSVvKWnVu8yp0KohVDVMC0qb7gk6ZISLhrWMPX2wPkDHOe9JHYJpTvVzdNASwrvqP0QXX6DYPoY4jQ7b2YarPGYcPZ7imgEvCXyKc7EBu5gK_MYJLsGGjNd6tFuDLTBsvgIZD2sa5x3-ZX-CX8MMOVfbtNhURSXiHACWF-iZrwA4vpuP0PdPH7-dfG7Ov56enXw4b1xHutJ46vqeO6c66VzrmOdKAW_V0GsFgg6K91L0pNWMSTkAA8cZABBPOfGC8_YInW3cIdq9WdI42XRloh3N7UZMO2NTGV0AY7mQnnhJNfWcSWt1Z5UkXA2aUa19Zb3fWMvaTzA4mEuy4RH08ck8_jC7eGnqVwgVrALe3AFSvFghFzON2UEIdoZaaMOI7JSWUtIqff2PdB_XVCu8qRgjWpOqYpvKpZhz7dL9YygxNwExW0BMDYi5DYjpqunVw2_cW_7EoQraTZCXm0ZC-nv3f7DXvM7Iqw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076220990</pqid></control><display><type>article</type><title>Metabolomic analysis of mouse prefrontal cortex reveals upregulated analytes during wakefulness compared to sleep</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Bourdon, Allen K. ; Spano, Giovanna Maria ; Marshall, William ; Bellesi, Michele ; Tononi, Giulio ; Serra, Pier Andrea ; Baghdoyan, Helen A. ; Lydic, Ralph ; Campagna, Shawn R. ; Cirelli, Chiara</creator><creatorcontrib>Bourdon, Allen K. ; Spano, Giovanna Maria ; Marshall, William ; Bellesi, Michele ; Tononi, Giulio ; Serra, Pier Andrea ; Baghdoyan, Helen A. ; Lydic, Ralph ; Campagna, Shawn R. ; Cirelli, Chiara</creatorcontrib><description>By identifying endogenous molecules in brain extracellular fluid metabolomics can provide insight into the regulatory mechanisms and functions of sleep. Here we studied how the cortical metabolome changes during sleep, sleep deprivation and spontaneous wakefulness. Mice were implanted with electrodes for chronic sleep/wake recording and with microdialysis probes targeting prefrontal and primary motor cortex. Metabolites were measured using ultra performance liquid chromatography-high resolution mass spectrometry. Sleep/wake changes in metabolites were evaluated using partial least squares discriminant analysis, linear mixed effects model analysis of variance, and machine-learning algorithms. More than 30 known metabolites were reliably detected in most samples. When used by a logistic regression classifier, the profile of these metabolites across sleep, spontaneous wake, and enforced wake was sufficient to assign mice to their correct experimental group (pair-wise) in 80–100% of cases. Eleven of these metabolites showed significantly higher levels in awake than in sleeping mice. Some changes extend previous findings (glutamate, homovanillic acid, lactate, pyruvate, tryptophan, uridine), while others are novel (D-gluconate, N-acetyl-beta-alanine, N-acetylglutamine, orotate, succinate/methylmalonate). The upregulation of the
de novo
pyrimidine pathway, gluconate shunt and aerobic glycolysis may reflect a wake-dependent need to promote the synthesis of many essential components, from nucleic acids to synaptic membranes.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-29511-6</identifier><identifier>PMID: 30046159</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/1385/1877 ; 631/378/1385/519 ; 64/60 ; 82/58 ; Alanine ; Animals ; Cortex (motor) ; Discriminant analysis ; Glutamic Acid - metabolism ; Glycolysis ; Homovanillic acid ; Homovanillic Acid - metabolism ; Humanities and Social Sciences ; Humans ; Lactic acid ; Lactic Acid - metabolism ; Learning algorithms ; Liquid chromatography ; Mass spectrometry ; Mass spectroscopy ; Metabolites ; Metabolomics ; Mice ; Microdialysis ; Motor Cortex - metabolism ; Motor Cortex - physiopathology ; multidisciplinary ; Nucleic acids ; Prefrontal cortex ; Prefrontal Cortex - metabolism ; Prefrontal Cortex - physiopathology ; Pyruvic acid ; Pyruvic Acid - metabolism ; Rodents ; Science ; Science (multidisciplinary) ; Sleep ; Sleep - physiology ; Sleep and wakefulness ; Sleep deprivation ; Sleep Deprivation - metabolism ; Sleep Deprivation - physiopathology ; Synaptic membranes ; Tryptophan ; Tryptophan - metabolism ; Uridine ; Uridine - metabolism ; Variance analysis ; Wakefulness - physiology</subject><ispartof>Scientific reports, 2018-07, Vol.8 (1), p.11225-17, Article 11225</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-f1cbb4cc867cc3c2f488e438db98e51d84b75b0392277de2ec42eee0f140f5443</citedby><cites>FETCH-LOGICAL-c606t-f1cbb4cc867cc3c2f488e438db98e51d84b75b0392277de2ec42eee0f140f5443</cites><orcidid>0000-0003-0627-2448 ; 0000-0002-9373-1130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2076220990/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2076220990?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30046159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bourdon, Allen K.</creatorcontrib><creatorcontrib>Spano, Giovanna Maria</creatorcontrib><creatorcontrib>Marshall, William</creatorcontrib><creatorcontrib>Bellesi, Michele</creatorcontrib><creatorcontrib>Tononi, Giulio</creatorcontrib><creatorcontrib>Serra, Pier Andrea</creatorcontrib><creatorcontrib>Baghdoyan, Helen A.</creatorcontrib><creatorcontrib>Lydic, Ralph</creatorcontrib><creatorcontrib>Campagna, Shawn R.</creatorcontrib><creatorcontrib>Cirelli, Chiara</creatorcontrib><title>Metabolomic analysis of mouse prefrontal cortex reveals upregulated analytes during wakefulness compared to sleep</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>By identifying endogenous molecules in brain extracellular fluid metabolomics can provide insight into the regulatory mechanisms and functions of sleep. Here we studied how the cortical metabolome changes during sleep, sleep deprivation and spontaneous wakefulness. Mice were implanted with electrodes for chronic sleep/wake recording and with microdialysis probes targeting prefrontal and primary motor cortex. Metabolites were measured using ultra performance liquid chromatography-high resolution mass spectrometry. Sleep/wake changes in metabolites were evaluated using partial least squares discriminant analysis, linear mixed effects model analysis of variance, and machine-learning algorithms. More than 30 known metabolites were reliably detected in most samples. When used by a logistic regression classifier, the profile of these metabolites across sleep, spontaneous wake, and enforced wake was sufficient to assign mice to their correct experimental group (pair-wise) in 80–100% of cases. Eleven of these metabolites showed significantly higher levels in awake than in sleeping mice. Some changes extend previous findings (glutamate, homovanillic acid, lactate, pyruvate, tryptophan, uridine), while others are novel (D-gluconate, N-acetyl-beta-alanine, N-acetylglutamine, orotate, succinate/methylmalonate). The upregulation of the
de novo
pyrimidine pathway, gluconate shunt and aerobic glycolysis may reflect a wake-dependent need to promote the synthesis of many essential components, from nucleic acids to synaptic membranes.</description><subject>631/378/1385/1877</subject><subject>631/378/1385/519</subject><subject>64/60</subject><subject>82/58</subject><subject>Alanine</subject><subject>Animals</subject><subject>Cortex (motor)</subject><subject>Discriminant analysis</subject><subject>Glutamic Acid - metabolism</subject><subject>Glycolysis</subject><subject>Homovanillic acid</subject><subject>Homovanillic Acid - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Lactic acid</subject><subject>Lactic Acid - metabolism</subject><subject>Learning algorithms</subject><subject>Liquid chromatography</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Mice</subject><subject>Microdialysis</subject><subject>Motor Cortex - metabolism</subject><subject>Motor Cortex - physiopathology</subject><subject>multidisciplinary</subject><subject>Nucleic acids</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Prefrontal Cortex - physiopathology</subject><subject>Pyruvic acid</subject><subject>Pyruvic Acid - metabolism</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sleep</subject><subject>Sleep - physiology</subject><subject>Sleep and wakefulness</subject><subject>Sleep deprivation</subject><subject>Sleep Deprivation - metabolism</subject><subject>Sleep Deprivation - physiopathology</subject><subject>Synaptic membranes</subject><subject>Tryptophan</subject><subject>Tryptophan - metabolism</subject><subject>Uridine</subject><subject>Uridine - metabolism</subject><subject>Variance analysis</subject><subject>Wakefulness - physiology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ksFuFiEUhYnR2Kb2BVwYEjduRoGBATYmptHapMaNrgnDXH7nlxmmwFT79qWdWlsXsoHAOR9w70HoJSVvKWnVu8yp0KohVDVMC0qb7gk6ZISLhrWMPX2wPkDHOe9JHYJpTvVzdNASwrvqP0QXX6DYPoY4jQ7b2YarPGYcPZ7imgEvCXyKc7EBu5gK_MYJLsGGjNd6tFuDLTBsvgIZD2sa5x3-ZX-CX8MMOVfbtNhURSXiHACWF-iZrwA4vpuP0PdPH7-dfG7Ov56enXw4b1xHutJ46vqeO6c66VzrmOdKAW_V0GsFgg6K91L0pNWMSTkAA8cZABBPOfGC8_YInW3cIdq9WdI42XRloh3N7UZMO2NTGV0AY7mQnnhJNfWcSWt1Z5UkXA2aUa19Zb3fWMvaTzA4mEuy4RH08ck8_jC7eGnqVwgVrALe3AFSvFghFzON2UEIdoZaaMOI7JSWUtIqff2PdB_XVCu8qRgjWpOqYpvKpZhz7dL9YygxNwExW0BMDYi5DYjpqunVw2_cW_7EoQraTZCXm0ZC-nv3f7DXvM7Iqw</recordid><startdate>20180725</startdate><enddate>20180725</enddate><creator>Bourdon, Allen K.</creator><creator>Spano, Giovanna Maria</creator><creator>Marshall, William</creator><creator>Bellesi, Michele</creator><creator>Tononi, Giulio</creator><creator>Serra, Pier Andrea</creator><creator>Baghdoyan, Helen A.</creator><creator>Lydic, Ralph</creator><creator>Campagna, Shawn R.</creator><creator>Cirelli, Chiara</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0627-2448</orcidid><orcidid>https://orcid.org/0000-0002-9373-1130</orcidid></search><sort><creationdate>20180725</creationdate><title>Metabolomic analysis of mouse prefrontal cortex reveals upregulated analytes during wakefulness compared to sleep</title><author>Bourdon, Allen K. ; Spano, Giovanna Maria ; Marshall, William ; Bellesi, Michele ; Tononi, Giulio ; Serra, Pier Andrea ; Baghdoyan, Helen A. ; Lydic, Ralph ; Campagna, Shawn R. ; Cirelli, Chiara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-f1cbb4cc867cc3c2f488e438db98e51d84b75b0392277de2ec42eee0f140f5443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/378/1385/1877</topic><topic>631/378/1385/519</topic><topic>64/60</topic><topic>82/58</topic><topic>Alanine</topic><topic>Animals</topic><topic>Cortex (motor)</topic><topic>Discriminant analysis</topic><topic>Glutamic Acid - metabolism</topic><topic>Glycolysis</topic><topic>Homovanillic acid</topic><topic>Homovanillic Acid - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Lactic acid</topic><topic>Lactic Acid - metabolism</topic><topic>Learning algorithms</topic><topic>Liquid chromatography</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Mice</topic><topic>Microdialysis</topic><topic>Motor Cortex - metabolism</topic><topic>Motor Cortex - physiopathology</topic><topic>multidisciplinary</topic><topic>Nucleic acids</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Prefrontal Cortex - physiopathology</topic><topic>Pyruvic acid</topic><topic>Pyruvic Acid - metabolism</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sleep</topic><topic>Sleep - physiology</topic><topic>Sleep and wakefulness</topic><topic>Sleep deprivation</topic><topic>Sleep Deprivation - metabolism</topic><topic>Sleep Deprivation - physiopathology</topic><topic>Synaptic membranes</topic><topic>Tryptophan</topic><topic>Tryptophan - metabolism</topic><topic>Uridine</topic><topic>Uridine - metabolism</topic><topic>Variance analysis</topic><topic>Wakefulness - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourdon, Allen K.</creatorcontrib><creatorcontrib>Spano, Giovanna Maria</creatorcontrib><creatorcontrib>Marshall, William</creatorcontrib><creatorcontrib>Bellesi, Michele</creatorcontrib><creatorcontrib>Tononi, Giulio</creatorcontrib><creatorcontrib>Serra, Pier Andrea</creatorcontrib><creatorcontrib>Baghdoyan, Helen A.</creatorcontrib><creatorcontrib>Lydic, Ralph</creatorcontrib><creatorcontrib>Campagna, Shawn R.</creatorcontrib><creatorcontrib>Cirelli, Chiara</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourdon, Allen K.</au><au>Spano, Giovanna Maria</au><au>Marshall, William</au><au>Bellesi, Michele</au><au>Tononi, Giulio</au><au>Serra, Pier Andrea</au><au>Baghdoyan, Helen A.</au><au>Lydic, Ralph</au><au>Campagna, Shawn R.</au><au>Cirelli, Chiara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolomic analysis of mouse prefrontal cortex reveals upregulated analytes during wakefulness compared to sleep</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-07-25</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>11225</spage><epage>17</epage><pages>11225-17</pages><artnum>11225</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>By identifying endogenous molecules in brain extracellular fluid metabolomics can provide insight into the regulatory mechanisms and functions of sleep. Here we studied how the cortical metabolome changes during sleep, sleep deprivation and spontaneous wakefulness. Mice were implanted with electrodes for chronic sleep/wake recording and with microdialysis probes targeting prefrontal and primary motor cortex. Metabolites were measured using ultra performance liquid chromatography-high resolution mass spectrometry. Sleep/wake changes in metabolites were evaluated using partial least squares discriminant analysis, linear mixed effects model analysis of variance, and machine-learning algorithms. More than 30 known metabolites were reliably detected in most samples. When used by a logistic regression classifier, the profile of these metabolites across sleep, spontaneous wake, and enforced wake was sufficient to assign mice to their correct experimental group (pair-wise) in 80–100% of cases. Eleven of these metabolites showed significantly higher levels in awake than in sleeping mice. Some changes extend previous findings (glutamate, homovanillic acid, lactate, pyruvate, tryptophan, uridine), while others are novel (D-gluconate, N-acetyl-beta-alanine, N-acetylglutamine, orotate, succinate/methylmalonate). The upregulation of the
de novo
pyrimidine pathway, gluconate shunt and aerobic glycolysis may reflect a wake-dependent need to promote the synthesis of many essential components, from nucleic acids to synaptic membranes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30046159</pmid><doi>10.1038/s41598-018-29511-6</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0627-2448</orcidid><orcidid>https://orcid.org/0000-0002-9373-1130</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-07, Vol.8 (1), p.11225-17, Article 11225 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a457f0f7191f427aa96a87048d92199f |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/378/1385/1877 631/378/1385/519 64/60 82/58 Alanine Animals Cortex (motor) Discriminant analysis Glutamic Acid - metabolism Glycolysis Homovanillic acid Homovanillic Acid - metabolism Humanities and Social Sciences Humans Lactic acid Lactic Acid - metabolism Learning algorithms Liquid chromatography Mass spectrometry Mass spectroscopy Metabolites Metabolomics Mice Microdialysis Motor Cortex - metabolism Motor Cortex - physiopathology multidisciplinary Nucleic acids Prefrontal cortex Prefrontal Cortex - metabolism Prefrontal Cortex - physiopathology Pyruvic acid Pyruvic Acid - metabolism Rodents Science Science (multidisciplinary) Sleep Sleep - physiology Sleep and wakefulness Sleep deprivation Sleep Deprivation - metabolism Sleep Deprivation - physiopathology Synaptic membranes Tryptophan Tryptophan - metabolism Uridine Uridine - metabolism Variance analysis Wakefulness - physiology |
title | Metabolomic analysis of mouse prefrontal cortex reveals upregulated analytes during wakefulness compared to sleep |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolomic%20analysis%20of%20mouse%20prefrontal%20cortex%20reveals%20upregulated%20analytes%20during%20wakefulness%20compared%20to%20sleep&rft.jtitle=Scientific%20reports&rft.au=Bourdon,%20Allen%20K.&rft.date=2018-07-25&rft.volume=8&rft.issue=1&rft.spage=11225&rft.epage=17&rft.pages=11225-17&rft.artnum=11225&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-29511-6&rft_dat=%3Cproquest_doaj_%3E2076897771%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-f1cbb4cc867cc3c2f488e438db98e51d84b75b0392277de2ec42eee0f140f5443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076220990&rft_id=info:pmid/30046159&rfr_iscdi=true |