Loading…

Degradation properties and metabolic activity of alginate and chitosan polyelectrolytes for drug delivery and tissue engineering applications

Polysaccharides are long monosaccharide units which are emerging as promising materials for tissue engineering and drug delivery applications due to their biocompatibility, mostly good availability and tailorable properties, by to the wide possibility to modify chemical composition, structure—i.e.,...

Full description

Saved in:
Bibliographic Details
Published in:AIMS materials science 2015-01, Vol.2 (4), p.497-502
Main Authors: Guarino, Vincenzo, Caputo, Tania, Altobelli, Rosaria, Ambrosio, Luigi
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polysaccharides are long monosaccharide units which are emerging as promising materials for tissue engineering and drug delivery applications due to their biocompatibility, mostly good availability and tailorable properties, by to the wide possibility to modify chemical composition, structure—i.e., linear chain or branching—and polymer source (animals, plants, microorganisms). For their peculiar behaviour as polyelectrolites, polysaccharides have been applied in various forms, such as injectable hydrogels or porous and fibrous scaffolds—alone or in combination with other natural or synthetic polymers—to design bioinspired platforms for the regeneration of different tissues (i.e., blood vessels, myocardium, heart valves, bone, articular and tracheal cartilage, intervertebral discs, menisci, skin, liver, skeletal muscle, neural tissue, urinary bladder) as well as for encapsulation and controlled delivery of drugs for pharmaceutical devices. In this paper, we focus on the pH sensitive response and degradation behaviour of negative (i.e., alginate) and positive (i.e., chitosan) charged polysaccharides in order to discuss the differences in terms of metabolic activity of polyelectrolytes with different ionic strength for their use in drug delivery and tissue engineering area.
ISSN:2372-0484
DOI:10.3934/matersci.2015.4.497