Loading…

Delay in the dispersal of flocks moving in unbounded space using long-range interactions

Since the pioneering work by Vicsek and his collaborators on the motion of self-propelled particles, most of the subsequent studies have focused on the onset of ordered states through a phase transition driven by particle density and noise. Usually, the particles in these systems are placed within p...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2018-10, Vol.8 (1), p.15872-9, Article 15872
Main Authors: Zumaya, Martín, Larralde, Hernán, Aldana, Maximino
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Since the pioneering work by Vicsek and his collaborators on the motion of self-propelled particles, most of the subsequent studies have focused on the onset of ordered states through a phase transition driven by particle density and noise. Usually, the particles in these systems are placed within periodic boundary conditions and interact via short-range velocity alignment forces. However, when the periodic boundaries are eliminated, letting the particles move in open space, the system is not able to organize into a coherently moving group since even small amounts of noise cause the flock to break apart. While the phase transition has been thoroughly studied, the conditions to keep the flock cohesive in open space are still poorly understood. Here we extend the Vicsek model of collective motion by introducing long-range alignment interactions between the particles. We show that just a small number of these interactions is enough for the system to build up long lasting ordered states of collective motion in open space and in the presence of noise. This finding was verified for other models in addition to the Vicsek one, suggesting its generality and revealing the importance that long-range interactions can have for the cohesion of the flock.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-34208-x