Loading…
Z-YOLOv8s-based approach for road object recognition in complex traffic scenarios
Object detection in road scenarios is crucial for intelligent transport systems and autonomous driving, but complex traffic conditions pose significant challenges. This paper introduces Z-You Only Look Once version 8 small (Z-YOLOv8s), designed to improve both accuracy and real-time efficiency under...
Saved in:
Published in: | Alexandria engineering journal 2024-11, Vol.106, p.298-311 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Object detection in road scenarios is crucial for intelligent transport systems and autonomous driving, but complex traffic conditions pose significant challenges. This paper introduces Z-You Only Look Once version 8 small (Z-YOLOv8s), designed to improve both accuracy and real-time efficiency under real-world uncertainties. By incorporating Revisiting Perspective Vision Transformer (RepViT) and C2f into the YOLOv8s framework, and integrating the Large Selective Kernel Network (LSKNet), the model enhances spatial feature extraction. Additionally, the YOLOv8s backbone is optimized with Space-to-Depth Convolution (SPD-Conv) for better small object detection. The Softpool-Spatial Pyramid Pooling Fast (SoftPool-SPPF) module ensures precise characteristic information preservation. Z-YOLOv8s improves mean average precision (mAP)@0.5 on the Berkeley Deep Drive 100 K (BDD100K) and Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) datasets by 7.3 % and 3.8 %, respectively. It also achieves accuracy increases of 5.7 % and 6.5 % in Average Precision (AP)-Small, and a real-time detection speed of 78.41 frames per second (FPS) on the BDD100K. Z-YOLOv8s balances detection precision and processing speed more effectively than other detectors, as demonstrated by experimental results and comparisons.
•Designing a RepViTC2f module, to address occluded object challenges in traffic scenarios.•SoftPool-SPPF enhances small object detection by refining edge details.•Z-YOLOv8s balances speed and precision on BDD100K and KITTI datasets. |
---|---|
ISSN: | 1110-0168 |
DOI: | 10.1016/j.aej.2024.07.011 |