Loading…
Predicting instances of pathway ontology classes for pathway integration
To improve the outcomes of biological pathway analysis, a better way of integrating pathway data is needed. Ontologies can be used to organize data from disparate sources, and we leverage the Pathway Ontology as a unifying ontology for organizing pathway data. We aim to associate pathway instances f...
Saved in:
Published in: | Journal of biomedical semantics 2019-06, Vol.10 (1), p.11-11, Article 11 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c560t-ca06c5565631ba622e0b758f87a6f7b4ef215ffc838d1b85938a6bb325fdab9d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c560t-ca06c5565631ba622e0b758f87a6f7b4ef215ffc838d1b85938a6bb325fdab9d3 |
container_end_page | 11 |
container_issue | 1 |
container_start_page | 11 |
container_title | Journal of biomedical semantics |
container_volume | 10 |
creator | Wang, Lucy Lu Thomas Hayman, G Smith, Jennifer R Tutaj, Monika Shimoyama, Mary E Gennari, John H |
description | To improve the outcomes of biological pathway analysis, a better way of integrating pathway data is needed. Ontologies can be used to organize data from disparate sources, and we leverage the Pathway Ontology as a unifying ontology for organizing pathway data. We aim to associate pathway instances from different databases to the appropriate class in the Pathway Ontology.
Using a supervised machine learning approach, we trained neural networks to predict mappings between Reactome pathways and Pathway Ontology (PW) classes. For 2222 Reactome classes, the neural network (NN) model generated 10,952 class recommendations. We compared against a baseline bag-of-words (BOW) model for predicting correct PW classes. A 5% subset of Reactome pathways (111 pathways) was randomly selected, and the corresponding class recommendations from both models were evaluated by two curators. The precision of the BOW model was higher (0.49 for BOW and 0.39 for NN), but the recall was lower (0.42 for BOW and 0.78 for NN). Around 78% of Reactome pathways received pertinent recommendations from the NN model.
The neural predictive model produced meaningful class recommendations that assisted PW curators in selecting appropriate class mappings for Reactome pathways. Our methods can be used to reduce the manual effort associated with ontology curation, and more broadly, for augmenting the curators' ability to organize and integrate data from pathway databases using the Pathway Ontology. |
doi_str_mv | 10.1186/s13326-019-0202-8 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a48580a1c17f422ba60351f47a585c74</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A590760136</galeid><doaj_id>oai_doaj_org_article_a48580a1c17f422ba60351f47a585c74</doaj_id><sourcerecordid>A590760136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-ca06c5565631ba622e0b758f87a6f7b4ef215ffc838d1b85938a6bb325fdab9d3</originalsourceid><addsrcrecordid>eNptUk1vEzEQXSEQrUp_ABcUiQuXbT32-mMvSFUFtFIlOMDZmvXaW0cbO9gOKP8epylpg7APHs2898Yzek3zFsgFgBKXGRijoiXQt4QS2qoXzSklHbTQKfLyWXzSnOe8JPUwBkSx180JA-gFKHra3HxLdvSm-DAtfMgFg7F5Ed1ijeX-N24XMZQ4x2m7MDPmXGsupkPRh2KnhMXH8KZ55XDO9vzxPWt-fP70_fqmvfv65fb66q41XJDSGiTCcC64YDCgoNSSQXLllETh5NBZR4E7ZxRTIwyK90yhGAZGuRtx6Ed21tzudceIS71OfoVpqyN6_ZCIadKYijez1dgprgiCAek6Sms7wji4TiJX3Miuan3ca603w8qOxoaScD4SPa4Ef6-n-EvX78tOiCrw4VEgxZ8bm4te-WzsPGOwcZM1pR1VIGQvK_T9P9Bl3KRQV_WA6oVSFJ5QE9YBfHCx9jU7UX3FeyIFAbZre_EfVL2jXXkTg3W-5o8IsCeYFHNO1h1mBKJ3btJ7N-nqJr1zk1aV8-75cg6Mv95hfwAQHcN0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242968821</pqid></control><display><type>article</type><title>Predicting instances of pathway ontology classes for pathway integration</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Wang, Lucy Lu ; Thomas Hayman, G ; Smith, Jennifer R ; Tutaj, Monika ; Shimoyama, Mary E ; Gennari, John H</creator><creatorcontrib>Wang, Lucy Lu ; Thomas Hayman, G ; Smith, Jennifer R ; Tutaj, Monika ; Shimoyama, Mary E ; Gennari, John H</creatorcontrib><description>To improve the outcomes of biological pathway analysis, a better way of integrating pathway data is needed. Ontologies can be used to organize data from disparate sources, and we leverage the Pathway Ontology as a unifying ontology for organizing pathway data. We aim to associate pathway instances from different databases to the appropriate class in the Pathway Ontology.
Using a supervised machine learning approach, we trained neural networks to predict mappings between Reactome pathways and Pathway Ontology (PW) classes. For 2222 Reactome classes, the neural network (NN) model generated 10,952 class recommendations. We compared against a baseline bag-of-words (BOW) model for predicting correct PW classes. A 5% subset of Reactome pathways (111 pathways) was randomly selected, and the corresponding class recommendations from both models were evaluated by two curators. The precision of the BOW model was higher (0.49 for BOW and 0.39 for NN), but the recall was lower (0.42 for BOW and 0.78 for NN). Around 78% of Reactome pathways received pertinent recommendations from the NN model.
The neural predictive model produced meaningful class recommendations that assisted PW curators in selecting appropriate class mappings for Reactome pathways. Our methods can be used to reduce the manual effort associated with ontology curation, and more broadly, for augmenting the curators' ability to organize and integrate data from pathway databases using the Pathway Ontology.</description><identifier>ISSN: 2041-1480</identifier><identifier>EISSN: 2041-1480</identifier><identifier>DOI: 10.1186/s13326-019-0202-8</identifier><identifier>PMID: 31196182</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Acids ; Analysis ; Artificial neural networks ; Bioinformatics ; Biological Ontologies ; Curators ; Gene expression ; Genomes ; Information management ; Interoperability ; Learning algorithms ; Machine learning ; Metabolism ; Neural networks ; Neural Networks, Computer ; Ontology ; Ontology mapping ; Ontology-based data integration ; Pathway data interoperability ; Pathway ontology ; Prediction models ; Semantics ; Semi-automated ontology curation ; Statistical methods ; Supervised Machine Learning</subject><ispartof>Journal of biomedical semantics, 2019-06, Vol.10 (1), p.11-11, Article 11</ispartof><rights>COPYRIGHT 2019 BioMed Central Ltd.</rights><rights>2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-ca06c5565631ba622e0b758f87a6f7b4ef215ffc838d1b85938a6bb325fdab9d3</citedby><cites>FETCH-LOGICAL-c560t-ca06c5565631ba622e0b758f87a6f7b4ef215ffc838d1b85938a6bb325fdab9d3</cites><orcidid>0000-0001-8752-6635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567466/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2242968821?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25736,27907,27908,36995,36996,44573,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31196182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Lucy Lu</creatorcontrib><creatorcontrib>Thomas Hayman, G</creatorcontrib><creatorcontrib>Smith, Jennifer R</creatorcontrib><creatorcontrib>Tutaj, Monika</creatorcontrib><creatorcontrib>Shimoyama, Mary E</creatorcontrib><creatorcontrib>Gennari, John H</creatorcontrib><title>Predicting instances of pathway ontology classes for pathway integration</title><title>Journal of biomedical semantics</title><addtitle>J Biomed Semantics</addtitle><description>To improve the outcomes of biological pathway analysis, a better way of integrating pathway data is needed. Ontologies can be used to organize data from disparate sources, and we leverage the Pathway Ontology as a unifying ontology for organizing pathway data. We aim to associate pathway instances from different databases to the appropriate class in the Pathway Ontology.
Using a supervised machine learning approach, we trained neural networks to predict mappings between Reactome pathways and Pathway Ontology (PW) classes. For 2222 Reactome classes, the neural network (NN) model generated 10,952 class recommendations. We compared against a baseline bag-of-words (BOW) model for predicting correct PW classes. A 5% subset of Reactome pathways (111 pathways) was randomly selected, and the corresponding class recommendations from both models were evaluated by two curators. The precision of the BOW model was higher (0.49 for BOW and 0.39 for NN), but the recall was lower (0.42 for BOW and 0.78 for NN). Around 78% of Reactome pathways received pertinent recommendations from the NN model.
The neural predictive model produced meaningful class recommendations that assisted PW curators in selecting appropriate class mappings for Reactome pathways. Our methods can be used to reduce the manual effort associated with ontology curation, and more broadly, for augmenting the curators' ability to organize and integrate data from pathway databases using the Pathway Ontology.</description><subject>Acids</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Bioinformatics</subject><subject>Biological Ontologies</subject><subject>Curators</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Information management</subject><subject>Interoperability</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Metabolism</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Ontology</subject><subject>Ontology mapping</subject><subject>Ontology-based data integration</subject><subject>Pathway data interoperability</subject><subject>Pathway ontology</subject><subject>Prediction models</subject><subject>Semantics</subject><subject>Semi-automated ontology curation</subject><subject>Statistical methods</subject><subject>Supervised Machine Learning</subject><issn>2041-1480</issn><issn>2041-1480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1vEzEQXSEQrUp_ABcUiQuXbT32-mMvSFUFtFIlOMDZmvXaW0cbO9gOKP8epylpg7APHs2898Yzek3zFsgFgBKXGRijoiXQt4QS2qoXzSklHbTQKfLyWXzSnOe8JPUwBkSx180JA-gFKHra3HxLdvSm-DAtfMgFg7F5Ed1ijeX-N24XMZQ4x2m7MDPmXGsupkPRh2KnhMXH8KZ55XDO9vzxPWt-fP70_fqmvfv65fb66q41XJDSGiTCcC64YDCgoNSSQXLllETh5NBZR4E7ZxRTIwyK90yhGAZGuRtx6Ed21tzudceIS71OfoVpqyN6_ZCIadKYijez1dgprgiCAek6Sms7wji4TiJX3Miuan3ca603w8qOxoaScD4SPa4Ef6-n-EvX78tOiCrw4VEgxZ8bm4te-WzsPGOwcZM1pR1VIGQvK_T9P9Bl3KRQV_WA6oVSFJ5QE9YBfHCx9jU7UX3FeyIFAbZre_EfVL2jXXkTg3W-5o8IsCeYFHNO1h1mBKJ3btJ7N-nqJr1zk1aV8-75cg6Mv95hfwAQHcN0</recordid><startdate>20190613</startdate><enddate>20190613</enddate><creator>Wang, Lucy Lu</creator><creator>Thomas Hayman, G</creator><creator>Smith, Jennifer R</creator><creator>Tutaj, Monika</creator><creator>Shimoyama, Mary E</creator><creator>Gennari, John H</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8752-6635</orcidid></search><sort><creationdate>20190613</creationdate><title>Predicting instances of pathway ontology classes for pathway integration</title><author>Wang, Lucy Lu ; Thomas Hayman, G ; Smith, Jennifer R ; Tutaj, Monika ; Shimoyama, Mary E ; Gennari, John H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-ca06c5565631ba622e0b758f87a6f7b4ef215ffc838d1b85938a6bb325fdab9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acids</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Bioinformatics</topic><topic>Biological Ontologies</topic><topic>Curators</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Information management</topic><topic>Interoperability</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Metabolism</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Ontology</topic><topic>Ontology mapping</topic><topic>Ontology-based data integration</topic><topic>Pathway data interoperability</topic><topic>Pathway ontology</topic><topic>Prediction models</topic><topic>Semantics</topic><topic>Semi-automated ontology curation</topic><topic>Statistical methods</topic><topic>Supervised Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lucy Lu</creatorcontrib><creatorcontrib>Thomas Hayman, G</creatorcontrib><creatorcontrib>Smith, Jennifer R</creatorcontrib><creatorcontrib>Tutaj, Monika</creatorcontrib><creatorcontrib>Shimoyama, Mary E</creatorcontrib><creatorcontrib>Gennari, John H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of biomedical semantics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lucy Lu</au><au>Thomas Hayman, G</au><au>Smith, Jennifer R</au><au>Tutaj, Monika</au><au>Shimoyama, Mary E</au><au>Gennari, John H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting instances of pathway ontology classes for pathway integration</atitle><jtitle>Journal of biomedical semantics</jtitle><addtitle>J Biomed Semantics</addtitle><date>2019-06-13</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>11</spage><epage>11</epage><pages>11-11</pages><artnum>11</artnum><issn>2041-1480</issn><eissn>2041-1480</eissn><abstract>To improve the outcomes of biological pathway analysis, a better way of integrating pathway data is needed. Ontologies can be used to organize data from disparate sources, and we leverage the Pathway Ontology as a unifying ontology for organizing pathway data. We aim to associate pathway instances from different databases to the appropriate class in the Pathway Ontology.
Using a supervised machine learning approach, we trained neural networks to predict mappings between Reactome pathways and Pathway Ontology (PW) classes. For 2222 Reactome classes, the neural network (NN) model generated 10,952 class recommendations. We compared against a baseline bag-of-words (BOW) model for predicting correct PW classes. A 5% subset of Reactome pathways (111 pathways) was randomly selected, and the corresponding class recommendations from both models were evaluated by two curators. The precision of the BOW model was higher (0.49 for BOW and 0.39 for NN), but the recall was lower (0.42 for BOW and 0.78 for NN). Around 78% of Reactome pathways received pertinent recommendations from the NN model.
The neural predictive model produced meaningful class recommendations that assisted PW curators in selecting appropriate class mappings for Reactome pathways. Our methods can be used to reduce the manual effort associated with ontology curation, and more broadly, for augmenting the curators' ability to organize and integrate data from pathway databases using the Pathway Ontology.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>31196182</pmid><doi>10.1186/s13326-019-0202-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8752-6635</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1480 |
ispartof | Journal of biomedical semantics, 2019-06, Vol.10 (1), p.11-11, Article 11 |
issn | 2041-1480 2041-1480 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a48580a1c17f422ba60351f47a585c74 |
source | Publicly Available Content Database; PubMed Central |
subjects | Acids Analysis Artificial neural networks Bioinformatics Biological Ontologies Curators Gene expression Genomes Information management Interoperability Learning algorithms Machine learning Metabolism Neural networks Neural Networks, Computer Ontology Ontology mapping Ontology-based data integration Pathway data interoperability Pathway ontology Prediction models Semantics Semi-automated ontology curation Statistical methods Supervised Machine Learning |
title | Predicting instances of pathway ontology classes for pathway integration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20instances%20of%20pathway%20ontology%20classes%20for%20pathway%20integration&rft.jtitle=Journal%20of%20biomedical%20semantics&rft.au=Wang,%20Lucy%20Lu&rft.date=2019-06-13&rft.volume=10&rft.issue=1&rft.spage=11&rft.epage=11&rft.pages=11-11&rft.artnum=11&rft.issn=2041-1480&rft.eissn=2041-1480&rft_id=info:doi/10.1186/s13326-019-0202-8&rft_dat=%3Cgale_doaj_%3EA590760136%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c560t-ca06c5565631ba622e0b758f87a6f7b4ef215ffc838d1b85938a6bb325fdab9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2242968821&rft_id=info:pmid/31196182&rft_galeid=A590760136&rfr_iscdi=true |