Loading…

Predicting instances of pathway ontology classes for pathway integration

To improve the outcomes of biological pathway analysis, a better way of integrating pathway data is needed. Ontologies can be used to organize data from disparate sources, and we leverage the Pathway Ontology as a unifying ontology for organizing pathway data. We aim to associate pathway instances f...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical semantics 2019-06, Vol.10 (1), p.11-11, Article 11
Main Authors: Wang, Lucy Lu, Thomas Hayman, G, Smith, Jennifer R, Tutaj, Monika, Shimoyama, Mary E, Gennari, John H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c560t-ca06c5565631ba622e0b758f87a6f7b4ef215ffc838d1b85938a6bb325fdab9d3
cites cdi_FETCH-LOGICAL-c560t-ca06c5565631ba622e0b758f87a6f7b4ef215ffc838d1b85938a6bb325fdab9d3
container_end_page 11
container_issue 1
container_start_page 11
container_title Journal of biomedical semantics
container_volume 10
creator Wang, Lucy Lu
Thomas Hayman, G
Smith, Jennifer R
Tutaj, Monika
Shimoyama, Mary E
Gennari, John H
description To improve the outcomes of biological pathway analysis, a better way of integrating pathway data is needed. Ontologies can be used to organize data from disparate sources, and we leverage the Pathway Ontology as a unifying ontology for organizing pathway data. We aim to associate pathway instances from different databases to the appropriate class in the Pathway Ontology. Using a supervised machine learning approach, we trained neural networks to predict mappings between Reactome pathways and Pathway Ontology (PW) classes. For 2222 Reactome classes, the neural network (NN) model generated 10,952 class recommendations. We compared against a baseline bag-of-words (BOW) model for predicting correct PW classes. A 5% subset of Reactome pathways (111 pathways) was randomly selected, and the corresponding class recommendations from both models were evaluated by two curators. The precision of the BOW model was higher (0.49 for BOW and 0.39 for NN), but the recall was lower (0.42 for BOW and 0.78 for NN). Around 78% of Reactome pathways received pertinent recommendations from the NN model. The neural predictive model produced meaningful class recommendations that assisted PW curators in selecting appropriate class mappings for Reactome pathways. Our methods can be used to reduce the manual effort associated with ontology curation, and more broadly, for augmenting the curators' ability to organize and integrate data from pathway databases using the Pathway Ontology.
doi_str_mv 10.1186/s13326-019-0202-8
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a48580a1c17f422ba60351f47a585c74</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A590760136</galeid><doaj_id>oai_doaj_org_article_a48580a1c17f422ba60351f47a585c74</doaj_id><sourcerecordid>A590760136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-ca06c5565631ba622e0b758f87a6f7b4ef215ffc838d1b85938a6bb325fdab9d3</originalsourceid><addsrcrecordid>eNptUk1vEzEQXSEQrUp_ABcUiQuXbT32-mMvSFUFtFIlOMDZmvXaW0cbO9gOKP8epylpg7APHs2898Yzek3zFsgFgBKXGRijoiXQt4QS2qoXzSklHbTQKfLyWXzSnOe8JPUwBkSx180JA-gFKHra3HxLdvSm-DAtfMgFg7F5Ed1ijeX-N24XMZQ4x2m7MDPmXGsupkPRh2KnhMXH8KZ55XDO9vzxPWt-fP70_fqmvfv65fb66q41XJDSGiTCcC64YDCgoNSSQXLllETh5NBZR4E7ZxRTIwyK90yhGAZGuRtx6Ed21tzudceIS71OfoVpqyN6_ZCIadKYijez1dgprgiCAek6Sms7wji4TiJX3Miuan3ca603w8qOxoaScD4SPa4Ef6-n-EvX78tOiCrw4VEgxZ8bm4te-WzsPGOwcZM1pR1VIGQvK_T9P9Bl3KRQV_WA6oVSFJ5QE9YBfHCx9jU7UX3FeyIFAbZre_EfVL2jXXkTg3W-5o8IsCeYFHNO1h1mBKJ3btJ7N-nqJr1zk1aV8-75cg6Mv95hfwAQHcN0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242968821</pqid></control><display><type>article</type><title>Predicting instances of pathway ontology classes for pathway integration</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Wang, Lucy Lu ; Thomas Hayman, G ; Smith, Jennifer R ; Tutaj, Monika ; Shimoyama, Mary E ; Gennari, John H</creator><creatorcontrib>Wang, Lucy Lu ; Thomas Hayman, G ; Smith, Jennifer R ; Tutaj, Monika ; Shimoyama, Mary E ; Gennari, John H</creatorcontrib><description>To improve the outcomes of biological pathway analysis, a better way of integrating pathway data is needed. Ontologies can be used to organize data from disparate sources, and we leverage the Pathway Ontology as a unifying ontology for organizing pathway data. We aim to associate pathway instances from different databases to the appropriate class in the Pathway Ontology. Using a supervised machine learning approach, we trained neural networks to predict mappings between Reactome pathways and Pathway Ontology (PW) classes. For 2222 Reactome classes, the neural network (NN) model generated 10,952 class recommendations. We compared against a baseline bag-of-words (BOW) model for predicting correct PW classes. A 5% subset of Reactome pathways (111 pathways) was randomly selected, and the corresponding class recommendations from both models were evaluated by two curators. The precision of the BOW model was higher (0.49 for BOW and 0.39 for NN), but the recall was lower (0.42 for BOW and 0.78 for NN). Around 78% of Reactome pathways received pertinent recommendations from the NN model. The neural predictive model produced meaningful class recommendations that assisted PW curators in selecting appropriate class mappings for Reactome pathways. Our methods can be used to reduce the manual effort associated with ontology curation, and more broadly, for augmenting the curators' ability to organize and integrate data from pathway databases using the Pathway Ontology.</description><identifier>ISSN: 2041-1480</identifier><identifier>EISSN: 2041-1480</identifier><identifier>DOI: 10.1186/s13326-019-0202-8</identifier><identifier>PMID: 31196182</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Acids ; Analysis ; Artificial neural networks ; Bioinformatics ; Biological Ontologies ; Curators ; Gene expression ; Genomes ; Information management ; Interoperability ; Learning algorithms ; Machine learning ; Metabolism ; Neural networks ; Neural Networks, Computer ; Ontology ; Ontology mapping ; Ontology-based data integration ; Pathway data interoperability ; Pathway ontology ; Prediction models ; Semantics ; Semi-automated ontology curation ; Statistical methods ; Supervised Machine Learning</subject><ispartof>Journal of biomedical semantics, 2019-06, Vol.10 (1), p.11-11, Article 11</ispartof><rights>COPYRIGHT 2019 BioMed Central Ltd.</rights><rights>2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-ca06c5565631ba622e0b758f87a6f7b4ef215ffc838d1b85938a6bb325fdab9d3</citedby><cites>FETCH-LOGICAL-c560t-ca06c5565631ba622e0b758f87a6f7b4ef215ffc838d1b85938a6bb325fdab9d3</cites><orcidid>0000-0001-8752-6635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567466/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2242968821?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25736,27907,27908,36995,36996,44573,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31196182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Lucy Lu</creatorcontrib><creatorcontrib>Thomas Hayman, G</creatorcontrib><creatorcontrib>Smith, Jennifer R</creatorcontrib><creatorcontrib>Tutaj, Monika</creatorcontrib><creatorcontrib>Shimoyama, Mary E</creatorcontrib><creatorcontrib>Gennari, John H</creatorcontrib><title>Predicting instances of pathway ontology classes for pathway integration</title><title>Journal of biomedical semantics</title><addtitle>J Biomed Semantics</addtitle><description>To improve the outcomes of biological pathway analysis, a better way of integrating pathway data is needed. Ontologies can be used to organize data from disparate sources, and we leverage the Pathway Ontology as a unifying ontology for organizing pathway data. We aim to associate pathway instances from different databases to the appropriate class in the Pathway Ontology. Using a supervised machine learning approach, we trained neural networks to predict mappings between Reactome pathways and Pathway Ontology (PW) classes. For 2222 Reactome classes, the neural network (NN) model generated 10,952 class recommendations. We compared against a baseline bag-of-words (BOW) model for predicting correct PW classes. A 5% subset of Reactome pathways (111 pathways) was randomly selected, and the corresponding class recommendations from both models were evaluated by two curators. The precision of the BOW model was higher (0.49 for BOW and 0.39 for NN), but the recall was lower (0.42 for BOW and 0.78 for NN). Around 78% of Reactome pathways received pertinent recommendations from the NN model. The neural predictive model produced meaningful class recommendations that assisted PW curators in selecting appropriate class mappings for Reactome pathways. Our methods can be used to reduce the manual effort associated with ontology curation, and more broadly, for augmenting the curators' ability to organize and integrate data from pathway databases using the Pathway Ontology.</description><subject>Acids</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Bioinformatics</subject><subject>Biological Ontologies</subject><subject>Curators</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Information management</subject><subject>Interoperability</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Metabolism</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Ontology</subject><subject>Ontology mapping</subject><subject>Ontology-based data integration</subject><subject>Pathway data interoperability</subject><subject>Pathway ontology</subject><subject>Prediction models</subject><subject>Semantics</subject><subject>Semi-automated ontology curation</subject><subject>Statistical methods</subject><subject>Supervised Machine Learning</subject><issn>2041-1480</issn><issn>2041-1480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1vEzEQXSEQrUp_ABcUiQuXbT32-mMvSFUFtFIlOMDZmvXaW0cbO9gOKP8epylpg7APHs2898Yzek3zFsgFgBKXGRijoiXQt4QS2qoXzSklHbTQKfLyWXzSnOe8JPUwBkSx180JA-gFKHra3HxLdvSm-DAtfMgFg7F5Ed1ijeX-N24XMZQ4x2m7MDPmXGsupkPRh2KnhMXH8KZ55XDO9vzxPWt-fP70_fqmvfv65fb66q41XJDSGiTCcC64YDCgoNSSQXLllETh5NBZR4E7ZxRTIwyK90yhGAZGuRtx6Ed21tzudceIS71OfoVpqyN6_ZCIadKYijez1dgprgiCAek6Sms7wji4TiJX3Miuan3ca603w8qOxoaScD4SPa4Ef6-n-EvX78tOiCrw4VEgxZ8bm4te-WzsPGOwcZM1pR1VIGQvK_T9P9Bl3KRQV_WA6oVSFJ5QE9YBfHCx9jU7UX3FeyIFAbZre_EfVL2jXXkTg3W-5o8IsCeYFHNO1h1mBKJ3btJ7N-nqJr1zk1aV8-75cg6Mv95hfwAQHcN0</recordid><startdate>20190613</startdate><enddate>20190613</enddate><creator>Wang, Lucy Lu</creator><creator>Thomas Hayman, G</creator><creator>Smith, Jennifer R</creator><creator>Tutaj, Monika</creator><creator>Shimoyama, Mary E</creator><creator>Gennari, John H</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8752-6635</orcidid></search><sort><creationdate>20190613</creationdate><title>Predicting instances of pathway ontology classes for pathway integration</title><author>Wang, Lucy Lu ; Thomas Hayman, G ; Smith, Jennifer R ; Tutaj, Monika ; Shimoyama, Mary E ; Gennari, John H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-ca06c5565631ba622e0b758f87a6f7b4ef215ffc838d1b85938a6bb325fdab9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acids</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Bioinformatics</topic><topic>Biological Ontologies</topic><topic>Curators</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Information management</topic><topic>Interoperability</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Metabolism</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Ontology</topic><topic>Ontology mapping</topic><topic>Ontology-based data integration</topic><topic>Pathway data interoperability</topic><topic>Pathway ontology</topic><topic>Prediction models</topic><topic>Semantics</topic><topic>Semi-automated ontology curation</topic><topic>Statistical methods</topic><topic>Supervised Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lucy Lu</creatorcontrib><creatorcontrib>Thomas Hayman, G</creatorcontrib><creatorcontrib>Smith, Jennifer R</creatorcontrib><creatorcontrib>Tutaj, Monika</creatorcontrib><creatorcontrib>Shimoyama, Mary E</creatorcontrib><creatorcontrib>Gennari, John H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of biomedical semantics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lucy Lu</au><au>Thomas Hayman, G</au><au>Smith, Jennifer R</au><au>Tutaj, Monika</au><au>Shimoyama, Mary E</au><au>Gennari, John H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting instances of pathway ontology classes for pathway integration</atitle><jtitle>Journal of biomedical semantics</jtitle><addtitle>J Biomed Semantics</addtitle><date>2019-06-13</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>11</spage><epage>11</epage><pages>11-11</pages><artnum>11</artnum><issn>2041-1480</issn><eissn>2041-1480</eissn><abstract>To improve the outcomes of biological pathway analysis, a better way of integrating pathway data is needed. Ontologies can be used to organize data from disparate sources, and we leverage the Pathway Ontology as a unifying ontology for organizing pathway data. We aim to associate pathway instances from different databases to the appropriate class in the Pathway Ontology. Using a supervised machine learning approach, we trained neural networks to predict mappings between Reactome pathways and Pathway Ontology (PW) classes. For 2222 Reactome classes, the neural network (NN) model generated 10,952 class recommendations. We compared against a baseline bag-of-words (BOW) model for predicting correct PW classes. A 5% subset of Reactome pathways (111 pathways) was randomly selected, and the corresponding class recommendations from both models were evaluated by two curators. The precision of the BOW model was higher (0.49 for BOW and 0.39 for NN), but the recall was lower (0.42 for BOW and 0.78 for NN). Around 78% of Reactome pathways received pertinent recommendations from the NN model. The neural predictive model produced meaningful class recommendations that assisted PW curators in selecting appropriate class mappings for Reactome pathways. Our methods can be used to reduce the manual effort associated with ontology curation, and more broadly, for augmenting the curators' ability to organize and integrate data from pathway databases using the Pathway Ontology.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>31196182</pmid><doi>10.1186/s13326-019-0202-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8752-6635</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1480
ispartof Journal of biomedical semantics, 2019-06, Vol.10 (1), p.11-11, Article 11
issn 2041-1480
2041-1480
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a48580a1c17f422ba60351f47a585c74
source Publicly Available Content Database; PubMed Central
subjects Acids
Analysis
Artificial neural networks
Bioinformatics
Biological Ontologies
Curators
Gene expression
Genomes
Information management
Interoperability
Learning algorithms
Machine learning
Metabolism
Neural networks
Neural Networks, Computer
Ontology
Ontology mapping
Ontology-based data integration
Pathway data interoperability
Pathway ontology
Prediction models
Semantics
Semi-automated ontology curation
Statistical methods
Supervised Machine Learning
title Predicting instances of pathway ontology classes for pathway integration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20instances%20of%20pathway%20ontology%20classes%20for%20pathway%20integration&rft.jtitle=Journal%20of%20biomedical%20semantics&rft.au=Wang,%20Lucy%20Lu&rft.date=2019-06-13&rft.volume=10&rft.issue=1&rft.spage=11&rft.epage=11&rft.pages=11-11&rft.artnum=11&rft.issn=2041-1480&rft.eissn=2041-1480&rft_id=info:doi/10.1186/s13326-019-0202-8&rft_dat=%3Cgale_doaj_%3EA590760136%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c560t-ca06c5565631ba622e0b758f87a6f7b4ef215ffc838d1b85938a6bb325fdab9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2242968821&rft_id=info:pmid/31196182&rft_galeid=A590760136&rfr_iscdi=true