Loading…
Electrochemical Instrumentation of an Embedded Potentiostat System (EPS) for a Programmable-System-On-a-Chip
Under the main features required on portable devices in electrochemical instrumentation is to have a small size, low power consumption, economically affordable and precision in the measurements. This paper describes the development of a programmable Embedded Potentiostat System (EPS) capable of perf...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2018-12, Vol.18 (12), p.4490 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Under the main features required on portable devices in electrochemical instrumentation is to have a small size, low power consumption, economically affordable and precision in the measurements. This paper describes the development of a programmable Embedded Potentiostat System (EPS) capable of performing electrochemical sensing over system-on-a-chip platforms. Furthermore, the study explains a circuit design and develops some validation of the entire system. The hardware validation is performed by electrochemical experiments such as Double Step Chronoamperometry (DSC), Linear Sweep Voltammetry (LSV) and Cyclic Voltammetry (CV); moreover, a comparison of the experimental signals between a commercial potentiostat and the EPS was done by analysis of errors on the response signal. Results illustrate that the EPS is capable of handling currents in the range of absolute values of 86.44 to 3000 nA and having control voltages in the range of ±2 V. The device can support from 50 to 2000 samples per second. The EPS capabilities were compared with other compact potentiostats. The programmable EPS is an original approach which hugely reduces the hardware complexity and leads the way to create new applications for Point-of-Care or industrial developments with a reusable full electronics module. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s18124490 |