Loading…

Tree Rings as Proxies of Historical Runoff in a National Park in Northern Mexico: A Major Ecosystem Service Provider

A dendrochronological network of conifers (Pinus leiophylla, Pinus cembroides, Pinus engelmannii) was developed in the Cumbres de Majalca National Park (CMNP) in Chihuahua, Mexico, to reconstruct historical runoff patterns and examine the impact of ocean–atmosphere phenomena. The CMNP plays a vital...

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere 2023-08, Vol.14 (8), p.1199
Main Authors: Villanueva-Díaz, José, Correa-Díaz, Arian, Castruita-Esparza, Luis Ubaldo, Gutiérrez-García, Jesús Valentín, Martínez-Sifuentes, Aldo Rafael, Reyes-Camarillo, Fátima del Rocío
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A dendrochronological network of conifers (Pinus leiophylla, Pinus cembroides, Pinus engelmannii) was developed in the Cumbres de Majalca National Park (CMNP) in Chihuahua, Mexico, to reconstruct historical runoff patterns and examine the impact of ocean–atmosphere phenomena. The CMNP plays a vital role as a runoff source for Conchos River tributaries and groundwater recharge for Chihuahua City and nearby populations. The ring-width chronologies displayed a common signal from 1859 to 2021, with the highest association found between P. engelmannii and P. leiophylla (r = 0.65) and the lowest between P. cembroides and P. engelmannii (r = 0.55). The first principal component explained 75.7% of the variance, and among the species, P. leiophylla exhibited the highest correlation (0.624, p < 0.05) with the accumulated streamflow records from the previous November to July, allowing the construction of a bootstrapped model for runoff reconstruction. The reconstructed streamflow spanned from 1859 to 2014, with an average of 2.732 × 108 m3. Periods of low runoff occurred in 1860–1880, 1940–1960, and 1994–2014, while extreme wet years with high runoff occurred in 1865, 1884, and 1987. The interannual streamflow variability correlated significantly with ENSO indices (SOI, MEI, TRI, and sea surface temperature anomalies), particularly during the winter–spring seasons, indicating that warm phases of the ENSO increased precipitation and runoff. The analysis of return periods revealed probabilities for specific runoff volumes, enabling stakeholders to use the information to develop effective strategies for sustainable water allocation and utilization in the region.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos14081199