Loading…
First principles study in two-dimensional antiferromagnetic Mn2Cl8 with strain-controllable and hydrogenation
With the rapid development of spintronics, two-dimensional antiferromagnetic materials have attracted much attention because of their unique physical properties. Here, the monolayer Mn2Cl8 is discovered to be an intrinsically antiferromagnetic semiconductor in current work. The results show that mon...
Saved in:
Published in: | Materials research express 2023-04, Vol.10 (4), p.046102 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 4 |
container_start_page | 046102 |
container_title | Materials research express |
container_volume | 10 |
creator | Zhang, Michang Wang, Zhicui Wei, Yong Wan, Wenhui Liu, Yong Ge, Yanfeng |
description | With the rapid development of spintronics, two-dimensional antiferromagnetic materials have attracted much attention because of their unique physical properties. Here, the monolayer Mn2Cl8 is discovered to be an intrinsically antiferromagnetic semiconductor in current work. The results show that monolayer Mn2Cl8 and Mn2Cl4X4 (X = F, Br) are stable semiconductors with indirect bandgaps of 0.34eV, 0.95eV, and 0.55eV, respectively, and Mn2Cl8 has a Néel temperature (TN) of 245 K. In the systematic study of strain effects, TN changes significantly under strains from −4% to 4% when the antiferromagnetic ground state is not affected. And the compression strain can increase TN to 469 K due to the enhancement of antiferromagnetic coupling of the nearest adjacent magnetic atoms. Moreover, the bandgap and TN of monolayer Mn2Cl8 can be tuned by hydrogenation. This work finds that elemental substitution, strains, and hydrogen passivation is efficient routes to tune the electronic properties of monolayer antiferromagnetic semiconductor Mn2Cl8. |
doi_str_mv | 10.1088/2053-1591/acca68 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a4ab56d91525407988df00394bd3a51c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a4ab56d91525407988df00394bd3a51c</doaj_id><sourcerecordid>2801292010</sourcerecordid><originalsourceid>FETCH-LOGICAL-d360t-4fead6b15d7772fa69a411fcd1711a7bcde45d9bbdd154fc2c16ee0919e88b4c3</originalsourceid><addsrcrecordid>eNptkUFr3DAQhU2h0JDm3qOhh1zqRiNLtnQsS9MEUnppz2KskTdabMmRtKT772tnS3rpaeDxvQdvXlV9APYZmFI3nMm2AanhBq3FTr2pLl6ld9VVzgfGGO91K3l3Uc23PuVSL8kH65fJ5TqXI51qH-ryHBvyswvZx4BTjaH40aUUZ9wHV7ytvwe-m1T97MvjakvoQ2NjKClOEw6TWx1UP54oxb0LWNaU99XbEafsrv7ey-rX7defu7vm4ce3-92Xh4bajpVGjA6pG0BS3_d8xE6jABgtQQ-A_WDJCUl6GIhAitFyC51zTIN2Sg3CtpfV_TmXIh7MWm7GdDIRvXkRYtobTGuDyRkUOMiONEguBeu1UjQy1moxUIsStqyP56wlxaejy8Uc4jGtD8mGKwZccwZspT6dKR-XfwAws21itgHMNoA5b7Li1__B5_R7swjDRAeMm4XG9g-gFpC2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801292010</pqid></control><display><type>article</type><title>First principles study in two-dimensional antiferromagnetic Mn2Cl8 with strain-controllable and hydrogenation</title><source>Publicly Available Content Database</source><creator>Zhang, Michang ; Wang, Zhicui ; Wei, Yong ; Wan, Wenhui ; Liu, Yong ; Ge, Yanfeng</creator><creatorcontrib>Zhang, Michang ; Wang, Zhicui ; Wei, Yong ; Wan, Wenhui ; Liu, Yong ; Ge, Yanfeng</creatorcontrib><description>With the rapid development of spintronics, two-dimensional antiferromagnetic materials have attracted much attention because of their unique physical properties. Here, the monolayer Mn2Cl8 is discovered to be an intrinsically antiferromagnetic semiconductor in current work. The results show that monolayer Mn2Cl8 and Mn2Cl4X4 (X = F, Br) are stable semiconductors with indirect bandgaps of 0.34eV, 0.95eV, and 0.55eV, respectively, and Mn2Cl8 has a Néel temperature (TN) of 245 K. In the systematic study of strain effects, TN changes significantly under strains from −4% to 4% when the antiferromagnetic ground state is not affected. And the compression strain can increase TN to 469 K due to the enhancement of antiferromagnetic coupling of the nearest adjacent magnetic atoms. Moreover, the bandgap and TN of monolayer Mn2Cl8 can be tuned by hydrogenation. This work finds that elemental substitution, strains, and hydrogen passivation is efficient routes to tune the electronic properties of monolayer antiferromagnetic semiconductor Mn2Cl8.</description><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/acca68</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>antiferromagnetic semiconductor ; Antiferromagnetism ; Controllability ; Energy gap ; First principles ; first-principles calculation ; Hydrogenation ; Monolayers ; Monte Carlo simulation ; Neel temperature ; Néel temperature ; Physical properties ; Spintronics ; two-dimensional material</subject><ispartof>Materials research express, 2023-04, Vol.10 (4), p.046102</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><rights>2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2441-7295 ; 0000-0002-5435-9217 ; 0000-0002-6824-0495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2801292010?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhang, Michang</creatorcontrib><creatorcontrib>Wang, Zhicui</creatorcontrib><creatorcontrib>Wei, Yong</creatorcontrib><creatorcontrib>Wan, Wenhui</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Ge, Yanfeng</creatorcontrib><title>First principles study in two-dimensional antiferromagnetic Mn2Cl8 with strain-controllable and hydrogenation</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>With the rapid development of spintronics, two-dimensional antiferromagnetic materials have attracted much attention because of their unique physical properties. Here, the monolayer Mn2Cl8 is discovered to be an intrinsically antiferromagnetic semiconductor in current work. The results show that monolayer Mn2Cl8 and Mn2Cl4X4 (X = F, Br) are stable semiconductors with indirect bandgaps of 0.34eV, 0.95eV, and 0.55eV, respectively, and Mn2Cl8 has a Néel temperature (TN) of 245 K. In the systematic study of strain effects, TN changes significantly under strains from −4% to 4% when the antiferromagnetic ground state is not affected. And the compression strain can increase TN to 469 K due to the enhancement of antiferromagnetic coupling of the nearest adjacent magnetic atoms. Moreover, the bandgap and TN of monolayer Mn2Cl8 can be tuned by hydrogenation. This work finds that elemental substitution, strains, and hydrogen passivation is efficient routes to tune the electronic properties of monolayer antiferromagnetic semiconductor Mn2Cl8.</description><subject>antiferromagnetic semiconductor</subject><subject>Antiferromagnetism</subject><subject>Controllability</subject><subject>Energy gap</subject><subject>First principles</subject><subject>first-principles calculation</subject><subject>Hydrogenation</subject><subject>Monolayers</subject><subject>Monte Carlo simulation</subject><subject>Neel temperature</subject><subject>Néel temperature</subject><subject>Physical properties</subject><subject>Spintronics</subject><subject>two-dimensional material</subject><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkUFr3DAQhU2h0JDm3qOhh1zqRiNLtnQsS9MEUnppz2KskTdabMmRtKT772tnS3rpaeDxvQdvXlV9APYZmFI3nMm2AanhBq3FTr2pLl6ld9VVzgfGGO91K3l3Uc23PuVSL8kH65fJ5TqXI51qH-ryHBvyswvZx4BTjaH40aUUZ9wHV7ytvwe-m1T97MvjakvoQ2NjKClOEw6TWx1UP54oxb0LWNaU99XbEafsrv7ey-rX7defu7vm4ce3-92Xh4bajpVGjA6pG0BS3_d8xE6jABgtQQ-A_WDJCUl6GIhAitFyC51zTIN2Sg3CtpfV_TmXIh7MWm7GdDIRvXkRYtobTGuDyRkUOMiONEguBeu1UjQy1moxUIsStqyP56wlxaejy8Uc4jGtD8mGKwZccwZspT6dKR-XfwAws21itgHMNoA5b7Li1__B5_R7swjDRAeMm4XG9g-gFpC2</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Zhang, Michang</creator><creator>Wang, Zhicui</creator><creator>Wei, Yong</creator><creator>Wan, Wenhui</creator><creator>Liu, Yong</creator><creator>Ge, Yanfeng</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2441-7295</orcidid><orcidid>https://orcid.org/0000-0002-5435-9217</orcidid><orcidid>https://orcid.org/0000-0002-6824-0495</orcidid></search><sort><creationdate>20230401</creationdate><title>First principles study in two-dimensional antiferromagnetic Mn2Cl8 with strain-controllable and hydrogenation</title><author>Zhang, Michang ; Wang, Zhicui ; Wei, Yong ; Wan, Wenhui ; Liu, Yong ; Ge, Yanfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d360t-4fead6b15d7772fa69a411fcd1711a7bcde45d9bbdd154fc2c16ee0919e88b4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>antiferromagnetic semiconductor</topic><topic>Antiferromagnetism</topic><topic>Controllability</topic><topic>Energy gap</topic><topic>First principles</topic><topic>first-principles calculation</topic><topic>Hydrogenation</topic><topic>Monolayers</topic><topic>Monte Carlo simulation</topic><topic>Neel temperature</topic><topic>Néel temperature</topic><topic>Physical properties</topic><topic>Spintronics</topic><topic>two-dimensional material</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Michang</creatorcontrib><creatorcontrib>Wang, Zhicui</creatorcontrib><creatorcontrib>Wei, Yong</creatorcontrib><creatorcontrib>Wan, Wenhui</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Ge, Yanfeng</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Michang</au><au>Wang, Zhicui</au><au>Wei, Yong</au><au>Wan, Wenhui</au><au>Liu, Yong</au><au>Ge, Yanfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First principles study in two-dimensional antiferromagnetic Mn2Cl8 with strain-controllable and hydrogenation</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>10</volume><issue>4</issue><spage>046102</spage><pages>046102-</pages><eissn>2053-1591</eissn><abstract>With the rapid development of spintronics, two-dimensional antiferromagnetic materials have attracted much attention because of their unique physical properties. Here, the monolayer Mn2Cl8 is discovered to be an intrinsically antiferromagnetic semiconductor in current work. The results show that monolayer Mn2Cl8 and Mn2Cl4X4 (X = F, Br) are stable semiconductors with indirect bandgaps of 0.34eV, 0.95eV, and 0.55eV, respectively, and Mn2Cl8 has a Néel temperature (TN) of 245 K. In the systematic study of strain effects, TN changes significantly under strains from −4% to 4% when the antiferromagnetic ground state is not affected. And the compression strain can increase TN to 469 K due to the enhancement of antiferromagnetic coupling of the nearest adjacent magnetic atoms. Moreover, the bandgap and TN of monolayer Mn2Cl8 can be tuned by hydrogenation. This work finds that elemental substitution, strains, and hydrogen passivation is efficient routes to tune the electronic properties of monolayer antiferromagnetic semiconductor Mn2Cl8.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2053-1591/acca68</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2441-7295</orcidid><orcidid>https://orcid.org/0000-0002-5435-9217</orcidid><orcidid>https://orcid.org/0000-0002-6824-0495</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2053-1591 |
ispartof | Materials research express, 2023-04, Vol.10 (4), p.046102 |
issn | 2053-1591 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a4ab56d91525407988df00394bd3a51c |
source | Publicly Available Content Database |
subjects | antiferromagnetic semiconductor Antiferromagnetism Controllability Energy gap First principles first-principles calculation Hydrogenation Monolayers Monte Carlo simulation Neel temperature Néel temperature Physical properties Spintronics two-dimensional material |
title | First principles study in two-dimensional antiferromagnetic Mn2Cl8 with strain-controllable and hydrogenation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20principles%20study%20in%20two-dimensional%20antiferromagnetic%20Mn2Cl8%20with%20strain-controllable%20and%20hydrogenation&rft.jtitle=Materials%20research%20express&rft.au=Zhang,%20Michang&rft.date=2023-04-01&rft.volume=10&rft.issue=4&rft.spage=046102&rft.pages=046102-&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/acca68&rft_dat=%3Cproquest_doaj_%3E2801292010%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d360t-4fead6b15d7772fa69a411fcd1711a7bcde45d9bbdd154fc2c16ee0919e88b4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2801292010&rft_id=info:pmid/&rfr_iscdi=true |