Loading…

Mitigating the noise of DESI mocks using analytic control variates

In order to address fundamental questions related to the expansion history of the Universe and its primordial nature with the next generation of galaxy experiments, we need to model reliably large-scale structure observables such as the correlation function and the power spectrum. Cosmological $N$-b...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2023-10, Vol.6
Main Authors: Hadzhiyska, Boryana, White, Martin J., Chen, Xinyi, Garrison, Lehman H., DeRose, Joseph, Padmanabhan, Nikhil, Garcia-Quintero, Cristhian, Mena-Fernández, Juan, Chen, Shi-Fan, Seo, Hee-Jong, McDonald, Patrick, Aguilar, Jessica, Ahlen, Steven, Brooks, David, Claybaugh, Todd, de la Macorra, Axel, Doel, Peter, Font-Ribera, Andreu, Forero-Romero, Jaime E., Gontcho, Satya Gontcho A, Honscheid, Klaus, Kremin, Anthony, Landriau, Martin, Manera, Marc, Miquel, Ramon, Nie, Jundan, Palanque-Delabrouille, Nathalie, Rezaie, Mehdi, Rossi, Graziano, Sanchez, Eusebio, Schubnell, Michael, Tarlé, Gregoy, Zhou, Zhimin
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2603-a2373671dd2ec992ba0d1d430ac5e32a5552f19eb20ed9d1451664e709be88e33
cites
container_end_page
container_issue
container_start_page
container_title The Astrophysical journal
container_volume 6
creator Hadzhiyska, Boryana
White, Martin J.
Chen, Xinyi
Garrison, Lehman H.
DeRose, Joseph
Padmanabhan, Nikhil
Garcia-Quintero, Cristhian
Mena-Fernández, Juan
Chen, Shi-Fan
Seo, Hee-Jong
McDonald, Patrick
Aguilar, Jessica
Ahlen, Steven
Brooks, David
Claybaugh, Todd
de la Macorra, Axel
Doel, Peter
Font-Ribera, Andreu
Forero-Romero, Jaime E.
Gontcho, Satya Gontcho A
Honscheid, Klaus
Kremin, Anthony
Landriau, Martin
Manera, Marc
Miquel, Ramon
Nie, Jundan
Palanque-Delabrouille, Nathalie
Rezaie, Mehdi
Rossi, Graziano
Sanchez, Eusebio
Schubnell, Michael
Tarlé, Gregoy
Zhou, Zhimin
description In order to address fundamental questions related to the expansion history of the Universe and its primordial nature with the next generation of galaxy experiments, we need to model reliably large-scale structure observables such as the correlation function and the power spectrum. Cosmological $N$-body simulations provide a reference through which we can test our models, but their output suffers from sample variance on large scales. Fortunately, this is the regime where accurate analytic approximations exist. To reduce the variance, which is key to making optimal use of these simulations, we can leverage the accuracy and precision of such analytic descriptions using Control Variates (CV). We apply two control variate formulations to mock catalogs generated in anticipation of upcoming data from the Dark Energy Spectroscopic Instrument (DESI) to test the robustness of its analysis pipeline. Our CV-reduced measurements, of the power spectrum and correlation function, both pre- and post-reconstruction, offer a factor of 5-10 improvement in the measurement error compared with the raw measurements from the DESI mock catalogs. We explore the relevant properties of the galaxy samples that dictate this reduction and comment on the improvements we find on some of the derived quantities relevant to Baryon Acoustic Oscillation (BAO) analysis. We also provide an optimized package for computing the power spectra and other two-point statistics of an arbitrary galaxy catalog as well as a pipeline for obtaining CV-reduced measurements on any of the AbacusSummit cubic box outputs. We make our scripts, notebooks, and benchmark tests against existing software publicly available and report a speed improvement of a factor of $\sim$10 for a grid size of $N_{\rm mesh} = 256^3$ compared with $\texttt{nbodykit}$.
doi_str_mv 10.21105/astro.2308.12343
format article
fullrecord <record><control><sourceid>hal_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a4ad1742337d4f59b9a4b23ea266234e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a4ad1742337d4f59b9a4b23ea266234e</doaj_id><sourcerecordid>oai_HAL_hal_04199014v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2603-a2373671dd2ec992ba0d1d430ac5e32a5552f19eb20ed9d1451664e709be88e33</originalsourceid><addsrcrecordid>eNpVUU1PwzAMrRBIIOAHcKu4cdhInI82R743aYgDcI7cxN0CpUFNQOLf020IwcmW_fye7VcUJ5xNgXOmzjHlIU5BsHrKQUixUxyA0mqiObDdP_l-cZzSC2MM6koqoQ-Ky_uQwxJz6JdlXlHZx5CojG15ffM4L9-ie03lR1p3scfuKwdXutiPal35iUPATOmo2GuxS3T8Ew-L59ubp6vZZPFwN7-6WEwcaCYmCKISuuLeAzljoEHmuZeCoVMkAJVS0HJDDTDyxnOpuNaSKmYaqmsS4rCYb3l9xBf7PoQ3HL5sxGA3hTgsLQ7jgh1ZlOh5JUGIystWmcagbEAQgtbjf2jkOt1yxZSDTS5kcqvxsJ5ctiB0rUCPoLMtaIXdP73ZxcKua0xyYxiXn3zE8i3WDTGlgdrfAc7sxiS7McmuTbIbk8Q3LUyC8Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mitigating the noise of DESI mocks using analytic control variates</title><source>EZB Electronic Journals Library</source><creator>Hadzhiyska, Boryana ; White, Martin J. ; Chen, Xinyi ; Garrison, Lehman H. ; DeRose, Joseph ; Padmanabhan, Nikhil ; Garcia-Quintero, Cristhian ; Mena-Fernández, Juan ; Chen, Shi-Fan ; Seo, Hee-Jong ; McDonald, Patrick ; Aguilar, Jessica ; Ahlen, Steven ; Brooks, David ; Claybaugh, Todd ; de la Macorra, Axel ; Doel, Peter ; Font-Ribera, Andreu ; Forero-Romero, Jaime E. ; Gontcho, Satya Gontcho A ; Honscheid, Klaus ; Kremin, Anthony ; Landriau, Martin ; Manera, Marc ; Miquel, Ramon ; Nie, Jundan ; Palanque-Delabrouille, Nathalie ; Rezaie, Mehdi ; Rossi, Graziano ; Sanchez, Eusebio ; Schubnell, Michael ; Tarlé, Gregoy ; Zhou, Zhimin</creator><creatorcontrib>Hadzhiyska, Boryana ; White, Martin J. ; Chen, Xinyi ; Garrison, Lehman H. ; DeRose, Joseph ; Padmanabhan, Nikhil ; Garcia-Quintero, Cristhian ; Mena-Fernández, Juan ; Chen, Shi-Fan ; Seo, Hee-Jong ; McDonald, Patrick ; Aguilar, Jessica ; Ahlen, Steven ; Brooks, David ; Claybaugh, Todd ; de la Macorra, Axel ; Doel, Peter ; Font-Ribera, Andreu ; Forero-Romero, Jaime E. ; Gontcho, Satya Gontcho A ; Honscheid, Klaus ; Kremin, Anthony ; Landriau, Martin ; Manera, Marc ; Miquel, Ramon ; Nie, Jundan ; Palanque-Delabrouille, Nathalie ; Rezaie, Mehdi ; Rossi, Graziano ; Sanchez, Eusebio ; Schubnell, Michael ; Tarlé, Gregoy ; Zhou, Zhimin ; Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><description>In order to address fundamental questions related to the expansion history of the Universe and its primordial nature with the next generation of galaxy experiments, we need to model reliably large-scale structure observables such as the correlation function and the power spectrum. Cosmological $N$-body simulations provide a reference through which we can test our models, but their output suffers from sample variance on large scales. Fortunately, this is the regime where accurate analytic approximations exist. To reduce the variance, which is key to making optimal use of these simulations, we can leverage the accuracy and precision of such analytic descriptions using Control Variates (CV). We apply two control variate formulations to mock catalogs generated in anticipation of upcoming data from the Dark Energy Spectroscopic Instrument (DESI) to test the robustness of its analysis pipeline. Our CV-reduced measurements, of the power spectrum and correlation function, both pre- and post-reconstruction, offer a factor of 5-10 improvement in the measurement error compared with the raw measurements from the DESI mock catalogs. We explore the relevant properties of the galaxy samples that dictate this reduction and comment on the improvements we find on some of the derived quantities relevant to Baryon Acoustic Oscillation (BAO) analysis. We also provide an optimized package for computing the power spectra and other two-point statistics of an arbitrary galaxy catalog as well as a pipeline for obtaining CV-reduced measurements on any of the AbacusSummit cubic box outputs. We make our scripts, notebooks, and benchmark tests against existing software publicly available and report a speed improvement of a factor of $\sim$10 for a grid size of $N_{\rm mesh} = 256^3$ compared with $\texttt{nbodykit}$.</description><identifier>ISSN: 2565-6120</identifier><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 2565-6120</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.21105/astro.2308.12343</identifier><language>eng</language><publisher>United States: American Astronomical Society</publisher><subject>ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; control variables ; cosmology ; DESI ; N-body simulations ; Physics ; statistical methods</subject><ispartof>The Astrophysical journal, 2023-10, Vol.6</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2603-a2373671dd2ec992ba0d1d430ac5e32a5552f19eb20ed9d1451664e709be88e33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04199014$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2368526$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hadzhiyska, Boryana</creatorcontrib><creatorcontrib>White, Martin J.</creatorcontrib><creatorcontrib>Chen, Xinyi</creatorcontrib><creatorcontrib>Garrison, Lehman H.</creatorcontrib><creatorcontrib>DeRose, Joseph</creatorcontrib><creatorcontrib>Padmanabhan, Nikhil</creatorcontrib><creatorcontrib>Garcia-Quintero, Cristhian</creatorcontrib><creatorcontrib>Mena-Fernández, Juan</creatorcontrib><creatorcontrib>Chen, Shi-Fan</creatorcontrib><creatorcontrib>Seo, Hee-Jong</creatorcontrib><creatorcontrib>McDonald, Patrick</creatorcontrib><creatorcontrib>Aguilar, Jessica</creatorcontrib><creatorcontrib>Ahlen, Steven</creatorcontrib><creatorcontrib>Brooks, David</creatorcontrib><creatorcontrib>Claybaugh, Todd</creatorcontrib><creatorcontrib>de la Macorra, Axel</creatorcontrib><creatorcontrib>Doel, Peter</creatorcontrib><creatorcontrib>Font-Ribera, Andreu</creatorcontrib><creatorcontrib>Forero-Romero, Jaime E.</creatorcontrib><creatorcontrib>Gontcho, Satya Gontcho A</creatorcontrib><creatorcontrib>Honscheid, Klaus</creatorcontrib><creatorcontrib>Kremin, Anthony</creatorcontrib><creatorcontrib>Landriau, Martin</creatorcontrib><creatorcontrib>Manera, Marc</creatorcontrib><creatorcontrib>Miquel, Ramon</creatorcontrib><creatorcontrib>Nie, Jundan</creatorcontrib><creatorcontrib>Palanque-Delabrouille, Nathalie</creatorcontrib><creatorcontrib>Rezaie, Mehdi</creatorcontrib><creatorcontrib>Rossi, Graziano</creatorcontrib><creatorcontrib>Sanchez, Eusebio</creatorcontrib><creatorcontrib>Schubnell, Michael</creatorcontrib><creatorcontrib>Tarlé, Gregoy</creatorcontrib><creatorcontrib>Zhou, Zhimin</creatorcontrib><creatorcontrib>Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><title>Mitigating the noise of DESI mocks using analytic control variates</title><title>The Astrophysical journal</title><description>In order to address fundamental questions related to the expansion history of the Universe and its primordial nature with the next generation of galaxy experiments, we need to model reliably large-scale structure observables such as the correlation function and the power spectrum. Cosmological $N$-body simulations provide a reference through which we can test our models, but their output suffers from sample variance on large scales. Fortunately, this is the regime where accurate analytic approximations exist. To reduce the variance, which is key to making optimal use of these simulations, we can leverage the accuracy and precision of such analytic descriptions using Control Variates (CV). We apply two control variate formulations to mock catalogs generated in anticipation of upcoming data from the Dark Energy Spectroscopic Instrument (DESI) to test the robustness of its analysis pipeline. Our CV-reduced measurements, of the power spectrum and correlation function, both pre- and post-reconstruction, offer a factor of 5-10 improvement in the measurement error compared with the raw measurements from the DESI mock catalogs. We explore the relevant properties of the galaxy samples that dictate this reduction and comment on the improvements we find on some of the derived quantities relevant to Baryon Acoustic Oscillation (BAO) analysis. We also provide an optimized package for computing the power spectra and other two-point statistics of an arbitrary galaxy catalog as well as a pipeline for obtaining CV-reduced measurements on any of the AbacusSummit cubic box outputs. We make our scripts, notebooks, and benchmark tests against existing software publicly available and report a speed improvement of a factor of $\sim$10 for a grid size of $N_{\rm mesh} = 256^3$ compared with $\texttt{nbodykit}$.</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>control variables</subject><subject>cosmology</subject><subject>DESI</subject><subject>N-body simulations</subject><subject>Physics</subject><subject>statistical methods</subject><issn>2565-6120</issn><issn>0004-637X</issn><issn>2565-6120</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVUU1PwzAMrRBIIOAHcKu4cdhInI82R743aYgDcI7cxN0CpUFNQOLf020IwcmW_fye7VcUJ5xNgXOmzjHlIU5BsHrKQUixUxyA0mqiObDdP_l-cZzSC2MM6koqoQ-Ky_uQwxJz6JdlXlHZx5CojG15ffM4L9-ie03lR1p3scfuKwdXutiPal35iUPATOmo2GuxS3T8Ew-L59ubp6vZZPFwN7-6WEwcaCYmCKISuuLeAzljoEHmuZeCoVMkAJVS0HJDDTDyxnOpuNaSKmYaqmsS4rCYb3l9xBf7PoQ3HL5sxGA3hTgsLQ7jgh1ZlOh5JUGIystWmcagbEAQgtbjf2jkOt1yxZSDTS5kcqvxsJ5ctiB0rUCPoLMtaIXdP73ZxcKua0xyYxiXn3zE8i3WDTGlgdrfAc7sxiS7McmuTbIbk8Q3LUyC8Q</recordid><startdate>20231018</startdate><enddate>20231018</enddate><creator>Hadzhiyska, Boryana</creator><creator>White, Martin J.</creator><creator>Chen, Xinyi</creator><creator>Garrison, Lehman H.</creator><creator>DeRose, Joseph</creator><creator>Padmanabhan, Nikhil</creator><creator>Garcia-Quintero, Cristhian</creator><creator>Mena-Fernández, Juan</creator><creator>Chen, Shi-Fan</creator><creator>Seo, Hee-Jong</creator><creator>McDonald, Patrick</creator><creator>Aguilar, Jessica</creator><creator>Ahlen, Steven</creator><creator>Brooks, David</creator><creator>Claybaugh, Todd</creator><creator>de la Macorra, Axel</creator><creator>Doel, Peter</creator><creator>Font-Ribera, Andreu</creator><creator>Forero-Romero, Jaime E.</creator><creator>Gontcho, Satya Gontcho A</creator><creator>Honscheid, Klaus</creator><creator>Kremin, Anthony</creator><creator>Landriau, Martin</creator><creator>Manera, Marc</creator><creator>Miquel, Ramon</creator><creator>Nie, Jundan</creator><creator>Palanque-Delabrouille, Nathalie</creator><creator>Rezaie, Mehdi</creator><creator>Rossi, Graziano</creator><creator>Sanchez, Eusebio</creator><creator>Schubnell, Michael</creator><creator>Tarlé, Gregoy</creator><creator>Zhou, Zhimin</creator><general>American Astronomical Society</general><general>Maynooth Academic Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20231018</creationdate><title>Mitigating the noise of DESI mocks using analytic control variates</title><author>Hadzhiyska, Boryana ; White, Martin J. ; Chen, Xinyi ; Garrison, Lehman H. ; DeRose, Joseph ; Padmanabhan, Nikhil ; Garcia-Quintero, Cristhian ; Mena-Fernández, Juan ; Chen, Shi-Fan ; Seo, Hee-Jong ; McDonald, Patrick ; Aguilar, Jessica ; Ahlen, Steven ; Brooks, David ; Claybaugh, Todd ; de la Macorra, Axel ; Doel, Peter ; Font-Ribera, Andreu ; Forero-Romero, Jaime E. ; Gontcho, Satya Gontcho A ; Honscheid, Klaus ; Kremin, Anthony ; Landriau, Martin ; Manera, Marc ; Miquel, Ramon ; Nie, Jundan ; Palanque-Delabrouille, Nathalie ; Rezaie, Mehdi ; Rossi, Graziano ; Sanchez, Eusebio ; Schubnell, Michael ; Tarlé, Gregoy ; Zhou, Zhimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2603-a2373671dd2ec992ba0d1d430ac5e32a5552f19eb20ed9d1451664e709be88e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>control variables</topic><topic>cosmology</topic><topic>DESI</topic><topic>N-body simulations</topic><topic>Physics</topic><topic>statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadzhiyska, Boryana</creatorcontrib><creatorcontrib>White, Martin J.</creatorcontrib><creatorcontrib>Chen, Xinyi</creatorcontrib><creatorcontrib>Garrison, Lehman H.</creatorcontrib><creatorcontrib>DeRose, Joseph</creatorcontrib><creatorcontrib>Padmanabhan, Nikhil</creatorcontrib><creatorcontrib>Garcia-Quintero, Cristhian</creatorcontrib><creatorcontrib>Mena-Fernández, Juan</creatorcontrib><creatorcontrib>Chen, Shi-Fan</creatorcontrib><creatorcontrib>Seo, Hee-Jong</creatorcontrib><creatorcontrib>McDonald, Patrick</creatorcontrib><creatorcontrib>Aguilar, Jessica</creatorcontrib><creatorcontrib>Ahlen, Steven</creatorcontrib><creatorcontrib>Brooks, David</creatorcontrib><creatorcontrib>Claybaugh, Todd</creatorcontrib><creatorcontrib>de la Macorra, Axel</creatorcontrib><creatorcontrib>Doel, Peter</creatorcontrib><creatorcontrib>Font-Ribera, Andreu</creatorcontrib><creatorcontrib>Forero-Romero, Jaime E.</creatorcontrib><creatorcontrib>Gontcho, Satya Gontcho A</creatorcontrib><creatorcontrib>Honscheid, Klaus</creatorcontrib><creatorcontrib>Kremin, Anthony</creatorcontrib><creatorcontrib>Landriau, Martin</creatorcontrib><creatorcontrib>Manera, Marc</creatorcontrib><creatorcontrib>Miquel, Ramon</creatorcontrib><creatorcontrib>Nie, Jundan</creatorcontrib><creatorcontrib>Palanque-Delabrouille, Nathalie</creatorcontrib><creatorcontrib>Rezaie, Mehdi</creatorcontrib><creatorcontrib>Rossi, Graziano</creatorcontrib><creatorcontrib>Sanchez, Eusebio</creatorcontrib><creatorcontrib>Schubnell, Michael</creatorcontrib><creatorcontrib>Tarlé, Gregoy</creatorcontrib><creatorcontrib>Zhou, Zhimin</creatorcontrib><creatorcontrib>Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadzhiyska, Boryana</au><au>White, Martin J.</au><au>Chen, Xinyi</au><au>Garrison, Lehman H.</au><au>DeRose, Joseph</au><au>Padmanabhan, Nikhil</au><au>Garcia-Quintero, Cristhian</au><au>Mena-Fernández, Juan</au><au>Chen, Shi-Fan</au><au>Seo, Hee-Jong</au><au>McDonald, Patrick</au><au>Aguilar, Jessica</au><au>Ahlen, Steven</au><au>Brooks, David</au><au>Claybaugh, Todd</au><au>de la Macorra, Axel</au><au>Doel, Peter</au><au>Font-Ribera, Andreu</au><au>Forero-Romero, Jaime E.</au><au>Gontcho, Satya Gontcho A</au><au>Honscheid, Klaus</au><au>Kremin, Anthony</au><au>Landriau, Martin</au><au>Manera, Marc</au><au>Miquel, Ramon</au><au>Nie, Jundan</au><au>Palanque-Delabrouille, Nathalie</au><au>Rezaie, Mehdi</au><au>Rossi, Graziano</au><au>Sanchez, Eusebio</au><au>Schubnell, Michael</au><au>Tarlé, Gregoy</au><au>Zhou, Zhimin</au><aucorp>Univ. of Michigan, Ann Arbor, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitigating the noise of DESI mocks using analytic control variates</atitle><jtitle>The Astrophysical journal</jtitle><date>2023-10-18</date><risdate>2023</risdate><volume>6</volume><issn>2565-6120</issn><issn>0004-637X</issn><eissn>2565-6120</eissn><eissn>1538-4357</eissn><abstract>In order to address fundamental questions related to the expansion history of the Universe and its primordial nature with the next generation of galaxy experiments, we need to model reliably large-scale structure observables such as the correlation function and the power spectrum. Cosmological $N$-body simulations provide a reference through which we can test our models, but their output suffers from sample variance on large scales. Fortunately, this is the regime where accurate analytic approximations exist. To reduce the variance, which is key to making optimal use of these simulations, we can leverage the accuracy and precision of such analytic descriptions using Control Variates (CV). We apply two control variate formulations to mock catalogs generated in anticipation of upcoming data from the Dark Energy Spectroscopic Instrument (DESI) to test the robustness of its analysis pipeline. Our CV-reduced measurements, of the power spectrum and correlation function, both pre- and post-reconstruction, offer a factor of 5-10 improvement in the measurement error compared with the raw measurements from the DESI mock catalogs. We explore the relevant properties of the galaxy samples that dictate this reduction and comment on the improvements we find on some of the derived quantities relevant to Baryon Acoustic Oscillation (BAO) analysis. We also provide an optimized package for computing the power spectra and other two-point statistics of an arbitrary galaxy catalog as well as a pipeline for obtaining CV-reduced measurements on any of the AbacusSummit cubic box outputs. We make our scripts, notebooks, and benchmark tests against existing software publicly available and report a speed improvement of a factor of $\sim$10 for a grid size of $N_{\rm mesh} = 256^3$ compared with $\texttt{nbodykit}$.</abstract><cop>United States</cop><pub>American Astronomical Society</pub><doi>10.21105/astro.2308.12343</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2565-6120
ispartof The Astrophysical journal, 2023-10, Vol.6
issn 2565-6120
0004-637X
2565-6120
1538-4357
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a4ad1742337d4f59b9a4b23ea266234e
source EZB Electronic Journals Library
subjects ASTRONOMY AND ASTROPHYSICS
Astrophysics
control variables
cosmology
DESI
N-body simulations
Physics
statistical methods
title Mitigating the noise of DESI mocks using analytic control variates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitigating%20the%20noise%20of%20DESI%20mocks%20using%20analytic%20control%20variates&rft.jtitle=The%20Astrophysical%20journal&rft.au=Hadzhiyska,%20Boryana&rft.aucorp=Univ.%20of%20Michigan,%20Ann%20Arbor,%20MI%20(United%20States)&rft.date=2023-10-18&rft.volume=6&rft.issn=2565-6120&rft.eissn=2565-6120&rft_id=info:doi/10.21105/astro.2308.12343&rft_dat=%3Chal_doaj_%3Eoai_HAL_hal_04199014v1%3C/hal_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2603-a2373671dd2ec992ba0d1d430ac5e32a5552f19eb20ed9d1451664e709be88e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true