Loading…
Mitigating the noise of DESI mocks using analytic control variates
In order to address fundamental questions related to the expansion history of the Universe and its primordial nature with the next generation of galaxy experiments, we need to model reliably large-scale structure observables such as the correlation function and the power spectrum. Cosmological $N$-b...
Saved in:
Published in: | The Astrophysical journal 2023-10, Vol.6 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2603-a2373671dd2ec992ba0d1d430ac5e32a5552f19eb20ed9d1451664e709be88e33 |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | The Astrophysical journal |
container_volume | 6 |
creator | Hadzhiyska, Boryana White, Martin J. Chen, Xinyi Garrison, Lehman H. DeRose, Joseph Padmanabhan, Nikhil Garcia-Quintero, Cristhian Mena-Fernández, Juan Chen, Shi-Fan Seo, Hee-Jong McDonald, Patrick Aguilar, Jessica Ahlen, Steven Brooks, David Claybaugh, Todd de la Macorra, Axel Doel, Peter Font-Ribera, Andreu Forero-Romero, Jaime E. Gontcho, Satya Gontcho A Honscheid, Klaus Kremin, Anthony Landriau, Martin Manera, Marc Miquel, Ramon Nie, Jundan Palanque-Delabrouille, Nathalie Rezaie, Mehdi Rossi, Graziano Sanchez, Eusebio Schubnell, Michael Tarlé, Gregoy Zhou, Zhimin |
description | In order to address fundamental questions related to the expansion history of the Universe and its primordial nature with the next generation of galaxy experiments, we need to model reliably large-scale structure observables such as the correlation function and the power spectrum. Cosmological $N$-body simulations provide a reference through which we can test our models, but their output suffers from sample variance on large scales. Fortunately, this is the regime where accurate analytic approximations exist. To reduce the variance, which is key to making optimal use of these simulations, we can leverage the accuracy and precision of such analytic descriptions using Control Variates (CV). We apply two control variate formulations to mock catalogs generated in anticipation of upcoming data from the Dark Energy Spectroscopic Instrument (DESI) to test the robustness of its analysis pipeline. Our CV-reduced measurements, of the power spectrum and correlation function, both pre- and post-reconstruction, offer a factor of 5-10 improvement in the measurement error compared with the raw measurements from the DESI mock catalogs. We explore the relevant properties of the galaxy samples that dictate this reduction and comment on the improvements we find on some of the derived quantities relevant to Baryon Acoustic Oscillation (BAO) analysis. We also provide an optimized package for computing the power spectra and other two-point statistics of an arbitrary galaxy catalog as well as a pipeline for obtaining CV-reduced measurements on any of the AbacusSummit cubic box outputs. We make our scripts, notebooks, and benchmark tests against existing software publicly available and report a speed improvement of a factor of $\sim$10 for a grid size of $N_{\rm mesh} = 256^3$ compared with $\texttt{nbodykit}$. |
doi_str_mv | 10.21105/astro.2308.12343 |
format | article |
fullrecord | <record><control><sourceid>hal_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a4ad1742337d4f59b9a4b23ea266234e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a4ad1742337d4f59b9a4b23ea266234e</doaj_id><sourcerecordid>oai_HAL_hal_04199014v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2603-a2373671dd2ec992ba0d1d430ac5e32a5552f19eb20ed9d1451664e709be88e33</originalsourceid><addsrcrecordid>eNpVUU1PwzAMrRBIIOAHcKu4cdhInI82R743aYgDcI7cxN0CpUFNQOLf020IwcmW_fye7VcUJ5xNgXOmzjHlIU5BsHrKQUixUxyA0mqiObDdP_l-cZzSC2MM6koqoQ-Ky_uQwxJz6JdlXlHZx5CojG15ffM4L9-ie03lR1p3scfuKwdXutiPal35iUPATOmo2GuxS3T8Ew-L59ubp6vZZPFwN7-6WEwcaCYmCKISuuLeAzljoEHmuZeCoVMkAJVS0HJDDTDyxnOpuNaSKmYaqmsS4rCYb3l9xBf7PoQ3HL5sxGA3hTgsLQ7jgh1ZlOh5JUGIystWmcagbEAQgtbjf2jkOt1yxZSDTS5kcqvxsJ5ctiB0rUCPoLMtaIXdP73ZxcKua0xyYxiXn3zE8i3WDTGlgdrfAc7sxiS7McmuTbIbk8Q3LUyC8Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mitigating the noise of DESI mocks using analytic control variates</title><source>EZB Electronic Journals Library</source><creator>Hadzhiyska, Boryana ; White, Martin J. ; Chen, Xinyi ; Garrison, Lehman H. ; DeRose, Joseph ; Padmanabhan, Nikhil ; Garcia-Quintero, Cristhian ; Mena-Fernández, Juan ; Chen, Shi-Fan ; Seo, Hee-Jong ; McDonald, Patrick ; Aguilar, Jessica ; Ahlen, Steven ; Brooks, David ; Claybaugh, Todd ; de la Macorra, Axel ; Doel, Peter ; Font-Ribera, Andreu ; Forero-Romero, Jaime E. ; Gontcho, Satya Gontcho A ; Honscheid, Klaus ; Kremin, Anthony ; Landriau, Martin ; Manera, Marc ; Miquel, Ramon ; Nie, Jundan ; Palanque-Delabrouille, Nathalie ; Rezaie, Mehdi ; Rossi, Graziano ; Sanchez, Eusebio ; Schubnell, Michael ; Tarlé, Gregoy ; Zhou, Zhimin</creator><creatorcontrib>Hadzhiyska, Boryana ; White, Martin J. ; Chen, Xinyi ; Garrison, Lehman H. ; DeRose, Joseph ; Padmanabhan, Nikhil ; Garcia-Quintero, Cristhian ; Mena-Fernández, Juan ; Chen, Shi-Fan ; Seo, Hee-Jong ; McDonald, Patrick ; Aguilar, Jessica ; Ahlen, Steven ; Brooks, David ; Claybaugh, Todd ; de la Macorra, Axel ; Doel, Peter ; Font-Ribera, Andreu ; Forero-Romero, Jaime E. ; Gontcho, Satya Gontcho A ; Honscheid, Klaus ; Kremin, Anthony ; Landriau, Martin ; Manera, Marc ; Miquel, Ramon ; Nie, Jundan ; Palanque-Delabrouille, Nathalie ; Rezaie, Mehdi ; Rossi, Graziano ; Sanchez, Eusebio ; Schubnell, Michael ; Tarlé, Gregoy ; Zhou, Zhimin ; Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><description>In order to address fundamental questions related to the expansion history of the Universe and its primordial nature with the next generation of galaxy experiments, we need to model reliably large-scale structure observables such as the correlation function and the power spectrum. Cosmological $N$-body simulations provide a reference through which we can test our models, but their output suffers from sample variance on large scales. Fortunately, this is the regime where accurate analytic approximations exist. To reduce the variance, which is key to making optimal use of these simulations, we can leverage the accuracy and precision of such analytic descriptions using Control Variates (CV). We apply two control variate formulations to mock catalogs generated in anticipation of upcoming data from the Dark Energy Spectroscopic Instrument (DESI) to test the robustness of its analysis pipeline. Our CV-reduced measurements, of the power spectrum and correlation function, both pre- and post-reconstruction, offer a factor of 5-10 improvement in the measurement error compared with the raw measurements from the DESI mock catalogs. We explore the relevant properties of the galaxy samples that dictate this reduction and comment on the improvements we find on some of the derived quantities relevant to Baryon Acoustic Oscillation (BAO) analysis. We also provide an optimized package for computing the power spectra and other two-point statistics of an arbitrary galaxy catalog as well as a pipeline for obtaining CV-reduced measurements on any of the AbacusSummit cubic box outputs. We make our scripts, notebooks, and benchmark tests against existing software publicly available and report a speed improvement of a factor of $\sim$10 for a grid size of $N_{\rm mesh} = 256^3$ compared with $\texttt{nbodykit}$.</description><identifier>ISSN: 2565-6120</identifier><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 2565-6120</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.21105/astro.2308.12343</identifier><language>eng</language><publisher>United States: American Astronomical Society</publisher><subject>ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; control variables ; cosmology ; DESI ; N-body simulations ; Physics ; statistical methods</subject><ispartof>The Astrophysical journal, 2023-10, Vol.6</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2603-a2373671dd2ec992ba0d1d430ac5e32a5552f19eb20ed9d1451664e709be88e33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04199014$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2368526$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hadzhiyska, Boryana</creatorcontrib><creatorcontrib>White, Martin J.</creatorcontrib><creatorcontrib>Chen, Xinyi</creatorcontrib><creatorcontrib>Garrison, Lehman H.</creatorcontrib><creatorcontrib>DeRose, Joseph</creatorcontrib><creatorcontrib>Padmanabhan, Nikhil</creatorcontrib><creatorcontrib>Garcia-Quintero, Cristhian</creatorcontrib><creatorcontrib>Mena-Fernández, Juan</creatorcontrib><creatorcontrib>Chen, Shi-Fan</creatorcontrib><creatorcontrib>Seo, Hee-Jong</creatorcontrib><creatorcontrib>McDonald, Patrick</creatorcontrib><creatorcontrib>Aguilar, Jessica</creatorcontrib><creatorcontrib>Ahlen, Steven</creatorcontrib><creatorcontrib>Brooks, David</creatorcontrib><creatorcontrib>Claybaugh, Todd</creatorcontrib><creatorcontrib>de la Macorra, Axel</creatorcontrib><creatorcontrib>Doel, Peter</creatorcontrib><creatorcontrib>Font-Ribera, Andreu</creatorcontrib><creatorcontrib>Forero-Romero, Jaime E.</creatorcontrib><creatorcontrib>Gontcho, Satya Gontcho A</creatorcontrib><creatorcontrib>Honscheid, Klaus</creatorcontrib><creatorcontrib>Kremin, Anthony</creatorcontrib><creatorcontrib>Landriau, Martin</creatorcontrib><creatorcontrib>Manera, Marc</creatorcontrib><creatorcontrib>Miquel, Ramon</creatorcontrib><creatorcontrib>Nie, Jundan</creatorcontrib><creatorcontrib>Palanque-Delabrouille, Nathalie</creatorcontrib><creatorcontrib>Rezaie, Mehdi</creatorcontrib><creatorcontrib>Rossi, Graziano</creatorcontrib><creatorcontrib>Sanchez, Eusebio</creatorcontrib><creatorcontrib>Schubnell, Michael</creatorcontrib><creatorcontrib>Tarlé, Gregoy</creatorcontrib><creatorcontrib>Zhou, Zhimin</creatorcontrib><creatorcontrib>Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><title>Mitigating the noise of DESI mocks using analytic control variates</title><title>The Astrophysical journal</title><description>In order to address fundamental questions related to the expansion history of the Universe and its primordial nature with the next generation of galaxy experiments, we need to model reliably large-scale structure observables such as the correlation function and the power spectrum. Cosmological $N$-body simulations provide a reference through which we can test our models, but their output suffers from sample variance on large scales. Fortunately, this is the regime where accurate analytic approximations exist. To reduce the variance, which is key to making optimal use of these simulations, we can leverage the accuracy and precision of such analytic descriptions using Control Variates (CV). We apply two control variate formulations to mock catalogs generated in anticipation of upcoming data from the Dark Energy Spectroscopic Instrument (DESI) to test the robustness of its analysis pipeline. Our CV-reduced measurements, of the power spectrum and correlation function, both pre- and post-reconstruction, offer a factor of 5-10 improvement in the measurement error compared with the raw measurements from the DESI mock catalogs. We explore the relevant properties of the galaxy samples that dictate this reduction and comment on the improvements we find on some of the derived quantities relevant to Baryon Acoustic Oscillation (BAO) analysis. We also provide an optimized package for computing the power spectra and other two-point statistics of an arbitrary galaxy catalog as well as a pipeline for obtaining CV-reduced measurements on any of the AbacusSummit cubic box outputs. We make our scripts, notebooks, and benchmark tests against existing software publicly available and report a speed improvement of a factor of $\sim$10 for a grid size of $N_{\rm mesh} = 256^3$ compared with $\texttt{nbodykit}$.</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>control variables</subject><subject>cosmology</subject><subject>DESI</subject><subject>N-body simulations</subject><subject>Physics</subject><subject>statistical methods</subject><issn>2565-6120</issn><issn>0004-637X</issn><issn>2565-6120</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVUU1PwzAMrRBIIOAHcKu4cdhInI82R743aYgDcI7cxN0CpUFNQOLf020IwcmW_fye7VcUJ5xNgXOmzjHlIU5BsHrKQUixUxyA0mqiObDdP_l-cZzSC2MM6koqoQ-Ky_uQwxJz6JdlXlHZx5CojG15ffM4L9-ie03lR1p3scfuKwdXutiPal35iUPATOmo2GuxS3T8Ew-L59ubp6vZZPFwN7-6WEwcaCYmCKISuuLeAzljoEHmuZeCoVMkAJVS0HJDDTDyxnOpuNaSKmYaqmsS4rCYb3l9xBf7PoQ3HL5sxGA3hTgsLQ7jgh1ZlOh5JUGIystWmcagbEAQgtbjf2jkOt1yxZSDTS5kcqvxsJ5ctiB0rUCPoLMtaIXdP73ZxcKua0xyYxiXn3zE8i3WDTGlgdrfAc7sxiS7McmuTbIbk8Q3LUyC8Q</recordid><startdate>20231018</startdate><enddate>20231018</enddate><creator>Hadzhiyska, Boryana</creator><creator>White, Martin J.</creator><creator>Chen, Xinyi</creator><creator>Garrison, Lehman H.</creator><creator>DeRose, Joseph</creator><creator>Padmanabhan, Nikhil</creator><creator>Garcia-Quintero, Cristhian</creator><creator>Mena-Fernández, Juan</creator><creator>Chen, Shi-Fan</creator><creator>Seo, Hee-Jong</creator><creator>McDonald, Patrick</creator><creator>Aguilar, Jessica</creator><creator>Ahlen, Steven</creator><creator>Brooks, David</creator><creator>Claybaugh, Todd</creator><creator>de la Macorra, Axel</creator><creator>Doel, Peter</creator><creator>Font-Ribera, Andreu</creator><creator>Forero-Romero, Jaime E.</creator><creator>Gontcho, Satya Gontcho A</creator><creator>Honscheid, Klaus</creator><creator>Kremin, Anthony</creator><creator>Landriau, Martin</creator><creator>Manera, Marc</creator><creator>Miquel, Ramon</creator><creator>Nie, Jundan</creator><creator>Palanque-Delabrouille, Nathalie</creator><creator>Rezaie, Mehdi</creator><creator>Rossi, Graziano</creator><creator>Sanchez, Eusebio</creator><creator>Schubnell, Michael</creator><creator>Tarlé, Gregoy</creator><creator>Zhou, Zhimin</creator><general>American Astronomical Society</general><general>Maynooth Academic Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20231018</creationdate><title>Mitigating the noise of DESI mocks using analytic control variates</title><author>Hadzhiyska, Boryana ; White, Martin J. ; Chen, Xinyi ; Garrison, Lehman H. ; DeRose, Joseph ; Padmanabhan, Nikhil ; Garcia-Quintero, Cristhian ; Mena-Fernández, Juan ; Chen, Shi-Fan ; Seo, Hee-Jong ; McDonald, Patrick ; Aguilar, Jessica ; Ahlen, Steven ; Brooks, David ; Claybaugh, Todd ; de la Macorra, Axel ; Doel, Peter ; Font-Ribera, Andreu ; Forero-Romero, Jaime E. ; Gontcho, Satya Gontcho A ; Honscheid, Klaus ; Kremin, Anthony ; Landriau, Martin ; Manera, Marc ; Miquel, Ramon ; Nie, Jundan ; Palanque-Delabrouille, Nathalie ; Rezaie, Mehdi ; Rossi, Graziano ; Sanchez, Eusebio ; Schubnell, Michael ; Tarlé, Gregoy ; Zhou, Zhimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2603-a2373671dd2ec992ba0d1d430ac5e32a5552f19eb20ed9d1451664e709be88e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>control variables</topic><topic>cosmology</topic><topic>DESI</topic><topic>N-body simulations</topic><topic>Physics</topic><topic>statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadzhiyska, Boryana</creatorcontrib><creatorcontrib>White, Martin J.</creatorcontrib><creatorcontrib>Chen, Xinyi</creatorcontrib><creatorcontrib>Garrison, Lehman H.</creatorcontrib><creatorcontrib>DeRose, Joseph</creatorcontrib><creatorcontrib>Padmanabhan, Nikhil</creatorcontrib><creatorcontrib>Garcia-Quintero, Cristhian</creatorcontrib><creatorcontrib>Mena-Fernández, Juan</creatorcontrib><creatorcontrib>Chen, Shi-Fan</creatorcontrib><creatorcontrib>Seo, Hee-Jong</creatorcontrib><creatorcontrib>McDonald, Patrick</creatorcontrib><creatorcontrib>Aguilar, Jessica</creatorcontrib><creatorcontrib>Ahlen, Steven</creatorcontrib><creatorcontrib>Brooks, David</creatorcontrib><creatorcontrib>Claybaugh, Todd</creatorcontrib><creatorcontrib>de la Macorra, Axel</creatorcontrib><creatorcontrib>Doel, Peter</creatorcontrib><creatorcontrib>Font-Ribera, Andreu</creatorcontrib><creatorcontrib>Forero-Romero, Jaime E.</creatorcontrib><creatorcontrib>Gontcho, Satya Gontcho A</creatorcontrib><creatorcontrib>Honscheid, Klaus</creatorcontrib><creatorcontrib>Kremin, Anthony</creatorcontrib><creatorcontrib>Landriau, Martin</creatorcontrib><creatorcontrib>Manera, Marc</creatorcontrib><creatorcontrib>Miquel, Ramon</creatorcontrib><creatorcontrib>Nie, Jundan</creatorcontrib><creatorcontrib>Palanque-Delabrouille, Nathalie</creatorcontrib><creatorcontrib>Rezaie, Mehdi</creatorcontrib><creatorcontrib>Rossi, Graziano</creatorcontrib><creatorcontrib>Sanchez, Eusebio</creatorcontrib><creatorcontrib>Schubnell, Michael</creatorcontrib><creatorcontrib>Tarlé, Gregoy</creatorcontrib><creatorcontrib>Zhou, Zhimin</creatorcontrib><creatorcontrib>Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadzhiyska, Boryana</au><au>White, Martin J.</au><au>Chen, Xinyi</au><au>Garrison, Lehman H.</au><au>DeRose, Joseph</au><au>Padmanabhan, Nikhil</au><au>Garcia-Quintero, Cristhian</au><au>Mena-Fernández, Juan</au><au>Chen, Shi-Fan</au><au>Seo, Hee-Jong</au><au>McDonald, Patrick</au><au>Aguilar, Jessica</au><au>Ahlen, Steven</au><au>Brooks, David</au><au>Claybaugh, Todd</au><au>de la Macorra, Axel</au><au>Doel, Peter</au><au>Font-Ribera, Andreu</au><au>Forero-Romero, Jaime E.</au><au>Gontcho, Satya Gontcho A</au><au>Honscheid, Klaus</au><au>Kremin, Anthony</au><au>Landriau, Martin</au><au>Manera, Marc</au><au>Miquel, Ramon</au><au>Nie, Jundan</au><au>Palanque-Delabrouille, Nathalie</au><au>Rezaie, Mehdi</au><au>Rossi, Graziano</au><au>Sanchez, Eusebio</au><au>Schubnell, Michael</au><au>Tarlé, Gregoy</au><au>Zhou, Zhimin</au><aucorp>Univ. of Michigan, Ann Arbor, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitigating the noise of DESI mocks using analytic control variates</atitle><jtitle>The Astrophysical journal</jtitle><date>2023-10-18</date><risdate>2023</risdate><volume>6</volume><issn>2565-6120</issn><issn>0004-637X</issn><eissn>2565-6120</eissn><eissn>1538-4357</eissn><abstract>In order to address fundamental questions related to the expansion history of the Universe and its primordial nature with the next generation of galaxy experiments, we need to model reliably large-scale structure observables such as the correlation function and the power spectrum. Cosmological $N$-body simulations provide a reference through which we can test our models, but their output suffers from sample variance on large scales. Fortunately, this is the regime where accurate analytic approximations exist. To reduce the variance, which is key to making optimal use of these simulations, we can leverage the accuracy and precision of such analytic descriptions using Control Variates (CV). We apply two control variate formulations to mock catalogs generated in anticipation of upcoming data from the Dark Energy Spectroscopic Instrument (DESI) to test the robustness of its analysis pipeline. Our CV-reduced measurements, of the power spectrum and correlation function, both pre- and post-reconstruction, offer a factor of 5-10 improvement in the measurement error compared with the raw measurements from the DESI mock catalogs. We explore the relevant properties of the galaxy samples that dictate this reduction and comment on the improvements we find on some of the derived quantities relevant to Baryon Acoustic Oscillation (BAO) analysis. We also provide an optimized package for computing the power spectra and other two-point statistics of an arbitrary galaxy catalog as well as a pipeline for obtaining CV-reduced measurements on any of the AbacusSummit cubic box outputs. We make our scripts, notebooks, and benchmark tests against existing software publicly available and report a speed improvement of a factor of $\sim$10 for a grid size of $N_{\rm mesh} = 256^3$ compared with $\texttt{nbodykit}$.</abstract><cop>United States</cop><pub>American Astronomical Society</pub><doi>10.21105/astro.2308.12343</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2565-6120 |
ispartof | The Astrophysical journal, 2023-10, Vol.6 |
issn | 2565-6120 0004-637X 2565-6120 1538-4357 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a4ad1742337d4f59b9a4b23ea266234e |
source | EZB Electronic Journals Library |
subjects | ASTRONOMY AND ASTROPHYSICS Astrophysics control variables cosmology DESI N-body simulations Physics statistical methods |
title | Mitigating the noise of DESI mocks using analytic control variates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitigating%20the%20noise%20of%20DESI%20mocks%20using%20analytic%20control%20variates&rft.jtitle=The%20Astrophysical%20journal&rft.au=Hadzhiyska,%20Boryana&rft.aucorp=Univ.%20of%20Michigan,%20Ann%20Arbor,%20MI%20(United%20States)&rft.date=2023-10-18&rft.volume=6&rft.issn=2565-6120&rft.eissn=2565-6120&rft_id=info:doi/10.21105/astro.2308.12343&rft_dat=%3Chal_doaj_%3Eoai_HAL_hal_04199014v1%3C/hal_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2603-a2373671dd2ec992ba0d1d430ac5e32a5552f19eb20ed9d1451664e709be88e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |