Loading…

Early human fetal lung atlas reveals the temporal dynamics of epithelial cell plasticity

Studying human fetal lungs can inform how developmental defects and disease states alter the function of the lungs. Here, we sequenced >150,000 single cells from 19 healthy human pseudoglandular fetal lung tissues ranging between gestational weeks 10–19. We capture dynamic developmental trajector...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-07, Vol.15 (1), p.5898-24, Article 5898
Main Authors: Quach, Henry, Farrell, Spencer, Wu, Ming Jia Michael, Kanagarajah, Kayshani, Leung, Joseph Wai-Hin, Xu, Xiaoqiao, Kallurkar, Prajkta, Turinsky, Andrei L., Bear, Christine E., Ratjen, Felix, Kalish, Brian, Goyal, Sidhartha, Moraes, Theo J., Wong, Amy P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c422t-4d232a360dff4759eb735e6763679779492989a6978616c4be925af632f144813
container_end_page 24
container_issue 1
container_start_page 5898
container_title Nature communications
container_volume 15
creator Quach, Henry
Farrell, Spencer
Wu, Ming Jia Michael
Kanagarajah, Kayshani
Leung, Joseph Wai-Hin
Xu, Xiaoqiao
Kallurkar, Prajkta
Turinsky, Andrei L.
Bear, Christine E.
Ratjen, Felix
Kalish, Brian
Goyal, Sidhartha
Moraes, Theo J.
Wong, Amy P.
description Studying human fetal lungs can inform how developmental defects and disease states alter the function of the lungs. Here, we sequenced >150,000 single cells from 19 healthy human pseudoglandular fetal lung tissues ranging between gestational weeks 10–19. We capture dynamic developmental trajectories from progenitor cells that express abundant levels of the cystic fibrosis conductance transmembrane regulator ( CFTR ). These cells give rise to multiple specialized epithelial cell types. Combined with spatial transcriptomics, we show temporal regulation of key signalling pathways that may drive the temporal and spatial emergence of specialized epithelial cells including ciliated and pulmonary neuroendocrine cells. Finally, we show that human pluripotent stem cell-derived fetal lung models contain CFTR -expressing progenitor cells that capture similar lineage developmental trajectories as identified in the native tissue. Overall, this study provides a comprehensive single-cell atlas of the developing human lung, outlining the temporal and spatial complexities of cell lineage development and benchmarks fetal lung cultures from human pluripotent stem cell differentiations to similar developmental window. Quach and Farrell et al. report single-cell transcriptomic analysis of over 150,000 cell from 19 human fetal lung tissues and describe the temporal and spatial dynamics of epithelial lineage development. These epithelial lineage trajectories were further identified in human pluripotent stem cell-based models of lung cell differentiation.
doi_str_mv 10.1038/s41467-024-50281-5
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a4b68a6bade64f2b97f6c7af28a41953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a4b68a6bade64f2b97f6c7af28a41953</doaj_id><sourcerecordid>3079907821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-4d232a360dff4759eb735e6763679779492989a6978616c4be925af632f144813</originalsourceid><addsrcrecordid>eNp9Uktv1DAQjhAVrdr-AQ7IEhcuKX7FjxNCVWkrVeICEjdrkox3s0riYCeV9t_jbdrScsAX2_M9PDOeonjP6AWjwnxOkkmlS8plWVFuWFm9KU44laxkmou3L87HxXlKO5qXsMxI-a44FjZfBBcnxa8riP2ebJcBRuJxhp70y7ghMPeQSMR7hD6ReYtkxmEKMePtfoShaxIJnuDUZazvcrjBvidTVs1d0837s-LIZymeP-6nxc9vVz8ub8q779e3l1_vykZyPpey5YKDULT1XurKYq1FhUorobTV2krLrbGgrDaKqUbWaHkFXgnumZSGidPidvVtA-zcFLsB4t4F6NxDIMSNg5hT6tGBrJUBVUOLSnpeW-1Vo8FzA5LZSmSvL6vXtNQDtg2Ocy74lelrZOy2bhPuHWNcKqlMdvj06BDD7wXT7IYuHToDI4YlOUG1tVVlhc7Uj_9Qd2GJY-7VyqLa8EN5fGU1MaQU0T9nw6g7DIJbB8HlQXAPg-CqLPrwso5nydO3Z4JYCSlD4wbj37f_Y_sHqlq9Nw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079907821</pqid></control><display><type>article</type><title>Early human fetal lung atlas reveals the temporal dynamics of epithelial cell plasticity</title><source>Open Access: PubMed Central</source><source>Nature Publishing Group</source><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Quach, Henry ; Farrell, Spencer ; Wu, Ming Jia Michael ; Kanagarajah, Kayshani ; Leung, Joseph Wai-Hin ; Xu, Xiaoqiao ; Kallurkar, Prajkta ; Turinsky, Andrei L. ; Bear, Christine E. ; Ratjen, Felix ; Kalish, Brian ; Goyal, Sidhartha ; Moraes, Theo J. ; Wong, Amy P.</creator><creatorcontrib>Quach, Henry ; Farrell, Spencer ; Wu, Ming Jia Michael ; Kanagarajah, Kayshani ; Leung, Joseph Wai-Hin ; Xu, Xiaoqiao ; Kallurkar, Prajkta ; Turinsky, Andrei L. ; Bear, Christine E. ; Ratjen, Felix ; Kalish, Brian ; Goyal, Sidhartha ; Moraes, Theo J. ; Wong, Amy P.</creatorcontrib><description>Studying human fetal lungs can inform how developmental defects and disease states alter the function of the lungs. Here, we sequenced &gt;150,000 single cells from 19 healthy human pseudoglandular fetal lung tissues ranging between gestational weeks 10–19. We capture dynamic developmental trajectories from progenitor cells that express abundant levels of the cystic fibrosis conductance transmembrane regulator ( CFTR ). These cells give rise to multiple specialized epithelial cell types. Combined with spatial transcriptomics, we show temporal regulation of key signalling pathways that may drive the temporal and spatial emergence of specialized epithelial cells including ciliated and pulmonary neuroendocrine cells. Finally, we show that human pluripotent stem cell-derived fetal lung models contain CFTR -expressing progenitor cells that capture similar lineage developmental trajectories as identified in the native tissue. Overall, this study provides a comprehensive single-cell atlas of the developing human lung, outlining the temporal and spatial complexities of cell lineage development and benchmarks fetal lung cultures from human pluripotent stem cell differentiations to similar developmental window. Quach and Farrell et al. report single-cell transcriptomic analysis of over 150,000 cell from 19 human fetal lung tissues and describe the temporal and spatial dynamics of epithelial lineage development. These epithelial lineage trajectories were further identified in human pluripotent stem cell-based models of lung cell differentiation.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-50281-5</identifier><identifier>PMID: 39003323</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/100 ; 13/51 ; 38/39 ; 45/91 ; 631/136/142 ; 631/136/1660/1986 ; 631/136/532/1360 ; 631/532/2064/2158 ; Benchmarks ; Cell culture ; Cell Differentiation ; Cell Lineage ; Cell Plasticity ; Cystic fibrosis ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - metabolism ; Differentiation (biology) ; Epithelial cells ; Epithelial Cells - cytology ; Epithelial Cells - metabolism ; Epithelium ; Female ; Fetus - cytology ; Fetus - embryology ; Fetuses ; Gene Expression Regulation, Developmental ; Humanities and Social Sciences ; Humans ; Lung - cytology ; Lung - embryology ; Lung diseases ; Lungs ; multidisciplinary ; Neuroendocrine system ; Pluripotency ; Pluripotent Stem Cells - cytology ; Pluripotent Stem Cells - metabolism ; Progenitor cells ; Science ; Science (multidisciplinary) ; Signal Transduction ; Single-Cell Analysis ; Stem cells ; Trajectory analysis ; Transcriptome ; Transcriptomics</subject><ispartof>Nature communications, 2024-07, Vol.15 (1), p.5898-24, Article 5898</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-4d232a360dff4759eb735e6763679779492989a6978616c4be925af632f144813</cites><orcidid>0009-0000-7881-4440 ; 0000-0002-9580-1980 ; 0000-0002-6475-1140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3079907821/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3079907821?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39003323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quach, Henry</creatorcontrib><creatorcontrib>Farrell, Spencer</creatorcontrib><creatorcontrib>Wu, Ming Jia Michael</creatorcontrib><creatorcontrib>Kanagarajah, Kayshani</creatorcontrib><creatorcontrib>Leung, Joseph Wai-Hin</creatorcontrib><creatorcontrib>Xu, Xiaoqiao</creatorcontrib><creatorcontrib>Kallurkar, Prajkta</creatorcontrib><creatorcontrib>Turinsky, Andrei L.</creatorcontrib><creatorcontrib>Bear, Christine E.</creatorcontrib><creatorcontrib>Ratjen, Felix</creatorcontrib><creatorcontrib>Kalish, Brian</creatorcontrib><creatorcontrib>Goyal, Sidhartha</creatorcontrib><creatorcontrib>Moraes, Theo J.</creatorcontrib><creatorcontrib>Wong, Amy P.</creatorcontrib><title>Early human fetal lung atlas reveals the temporal dynamics of epithelial cell plasticity</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Studying human fetal lungs can inform how developmental defects and disease states alter the function of the lungs. Here, we sequenced &gt;150,000 single cells from 19 healthy human pseudoglandular fetal lung tissues ranging between gestational weeks 10–19. We capture dynamic developmental trajectories from progenitor cells that express abundant levels of the cystic fibrosis conductance transmembrane regulator ( CFTR ). These cells give rise to multiple specialized epithelial cell types. Combined with spatial transcriptomics, we show temporal regulation of key signalling pathways that may drive the temporal and spatial emergence of specialized epithelial cells including ciliated and pulmonary neuroendocrine cells. Finally, we show that human pluripotent stem cell-derived fetal lung models contain CFTR -expressing progenitor cells that capture similar lineage developmental trajectories as identified in the native tissue. Overall, this study provides a comprehensive single-cell atlas of the developing human lung, outlining the temporal and spatial complexities of cell lineage development and benchmarks fetal lung cultures from human pluripotent stem cell differentiations to similar developmental window. Quach and Farrell et al. report single-cell transcriptomic analysis of over 150,000 cell from 19 human fetal lung tissues and describe the temporal and spatial dynamics of epithelial lineage development. These epithelial lineage trajectories were further identified in human pluripotent stem cell-based models of lung cell differentiation.</description><subject>13/100</subject><subject>13/51</subject><subject>38/39</subject><subject>45/91</subject><subject>631/136/142</subject><subject>631/136/1660/1986</subject><subject>631/136/532/1360</subject><subject>631/532/2064/2158</subject><subject>Benchmarks</subject><subject>Cell culture</subject><subject>Cell Differentiation</subject><subject>Cell Lineage</subject><subject>Cell Plasticity</subject><subject>Cystic fibrosis</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</subject><subject>Differentiation (biology)</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelium</subject><subject>Female</subject><subject>Fetus - cytology</subject><subject>Fetus - embryology</subject><subject>Fetuses</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Lung - cytology</subject><subject>Lung - embryology</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>multidisciplinary</subject><subject>Neuroendocrine system</subject><subject>Pluripotency</subject><subject>Pluripotent Stem Cells - cytology</subject><subject>Pluripotent Stem Cells - metabolism</subject><subject>Progenitor cells</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Single-Cell Analysis</subject><subject>Stem cells</subject><subject>Trajectory analysis</subject><subject>Transcriptome</subject><subject>Transcriptomics</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uktv1DAQjhAVrdr-AQ7IEhcuKX7FjxNCVWkrVeICEjdrkox3s0riYCeV9t_jbdrScsAX2_M9PDOeonjP6AWjwnxOkkmlS8plWVFuWFm9KU44laxkmou3L87HxXlKO5qXsMxI-a44FjZfBBcnxa8riP2ebJcBRuJxhp70y7ghMPeQSMR7hD6ReYtkxmEKMePtfoShaxIJnuDUZazvcrjBvidTVs1d0837s-LIZymeP-6nxc9vVz8ub8q779e3l1_vykZyPpey5YKDULT1XurKYq1FhUorobTV2krLrbGgrDaKqUbWaHkFXgnumZSGidPidvVtA-zcFLsB4t4F6NxDIMSNg5hT6tGBrJUBVUOLSnpeW-1Vo8FzA5LZSmSvL6vXtNQDtg2Ocy74lelrZOy2bhPuHWNcKqlMdvj06BDD7wXT7IYuHToDI4YlOUG1tVVlhc7Uj_9Qd2GJY-7VyqLa8EN5fGU1MaQU0T9nw6g7DIJbB8HlQXAPg-CqLPrwso5nydO3Z4JYCSlD4wbj37f_Y_sHqlq9Nw</recordid><startdate>20240713</startdate><enddate>20240713</enddate><creator>Quach, Henry</creator><creator>Farrell, Spencer</creator><creator>Wu, Ming Jia Michael</creator><creator>Kanagarajah, Kayshani</creator><creator>Leung, Joseph Wai-Hin</creator><creator>Xu, Xiaoqiao</creator><creator>Kallurkar, Prajkta</creator><creator>Turinsky, Andrei L.</creator><creator>Bear, Christine E.</creator><creator>Ratjen, Felix</creator><creator>Kalish, Brian</creator><creator>Goyal, Sidhartha</creator><creator>Moraes, Theo J.</creator><creator>Wong, Amy P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0000-7881-4440</orcidid><orcidid>https://orcid.org/0000-0002-9580-1980</orcidid><orcidid>https://orcid.org/0000-0002-6475-1140</orcidid></search><sort><creationdate>20240713</creationdate><title>Early human fetal lung atlas reveals the temporal dynamics of epithelial cell plasticity</title><author>Quach, Henry ; Farrell, Spencer ; Wu, Ming Jia Michael ; Kanagarajah, Kayshani ; Leung, Joseph Wai-Hin ; Xu, Xiaoqiao ; Kallurkar, Prajkta ; Turinsky, Andrei L. ; Bear, Christine E. ; Ratjen, Felix ; Kalish, Brian ; Goyal, Sidhartha ; Moraes, Theo J. ; Wong, Amy P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-4d232a360dff4759eb735e6763679779492989a6978616c4be925af632f144813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>13/100</topic><topic>13/51</topic><topic>38/39</topic><topic>45/91</topic><topic>631/136/142</topic><topic>631/136/1660/1986</topic><topic>631/136/532/1360</topic><topic>631/532/2064/2158</topic><topic>Benchmarks</topic><topic>Cell culture</topic><topic>Cell Differentiation</topic><topic>Cell Lineage</topic><topic>Cell Plasticity</topic><topic>Cystic fibrosis</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</topic><topic>Differentiation (biology)</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelium</topic><topic>Female</topic><topic>Fetus - cytology</topic><topic>Fetus - embryology</topic><topic>Fetuses</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Lung - cytology</topic><topic>Lung - embryology</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>multidisciplinary</topic><topic>Neuroendocrine system</topic><topic>Pluripotency</topic><topic>Pluripotent Stem Cells - cytology</topic><topic>Pluripotent Stem Cells - metabolism</topic><topic>Progenitor cells</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Single-Cell Analysis</topic><topic>Stem cells</topic><topic>Trajectory analysis</topic><topic>Transcriptome</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quach, Henry</creatorcontrib><creatorcontrib>Farrell, Spencer</creatorcontrib><creatorcontrib>Wu, Ming Jia Michael</creatorcontrib><creatorcontrib>Kanagarajah, Kayshani</creatorcontrib><creatorcontrib>Leung, Joseph Wai-Hin</creatorcontrib><creatorcontrib>Xu, Xiaoqiao</creatorcontrib><creatorcontrib>Kallurkar, Prajkta</creatorcontrib><creatorcontrib>Turinsky, Andrei L.</creatorcontrib><creatorcontrib>Bear, Christine E.</creatorcontrib><creatorcontrib>Ratjen, Felix</creatorcontrib><creatorcontrib>Kalish, Brian</creatorcontrib><creatorcontrib>Goyal, Sidhartha</creatorcontrib><creatorcontrib>Moraes, Theo J.</creatorcontrib><creatorcontrib>Wong, Amy P.</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quach, Henry</au><au>Farrell, Spencer</au><au>Wu, Ming Jia Michael</au><au>Kanagarajah, Kayshani</au><au>Leung, Joseph Wai-Hin</au><au>Xu, Xiaoqiao</au><au>Kallurkar, Prajkta</au><au>Turinsky, Andrei L.</au><au>Bear, Christine E.</au><au>Ratjen, Felix</au><au>Kalish, Brian</au><au>Goyal, Sidhartha</au><au>Moraes, Theo J.</au><au>Wong, Amy P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early human fetal lung atlas reveals the temporal dynamics of epithelial cell plasticity</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-07-13</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>5898</spage><epage>24</epage><pages>5898-24</pages><artnum>5898</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Studying human fetal lungs can inform how developmental defects and disease states alter the function of the lungs. Here, we sequenced &gt;150,000 single cells from 19 healthy human pseudoglandular fetal lung tissues ranging between gestational weeks 10–19. We capture dynamic developmental trajectories from progenitor cells that express abundant levels of the cystic fibrosis conductance transmembrane regulator ( CFTR ). These cells give rise to multiple specialized epithelial cell types. Combined with spatial transcriptomics, we show temporal regulation of key signalling pathways that may drive the temporal and spatial emergence of specialized epithelial cells including ciliated and pulmonary neuroendocrine cells. Finally, we show that human pluripotent stem cell-derived fetal lung models contain CFTR -expressing progenitor cells that capture similar lineage developmental trajectories as identified in the native tissue. Overall, this study provides a comprehensive single-cell atlas of the developing human lung, outlining the temporal and spatial complexities of cell lineage development and benchmarks fetal lung cultures from human pluripotent stem cell differentiations to similar developmental window. Quach and Farrell et al. report single-cell transcriptomic analysis of over 150,000 cell from 19 human fetal lung tissues and describe the temporal and spatial dynamics of epithelial lineage development. These epithelial lineage trajectories were further identified in human pluripotent stem cell-based models of lung cell differentiation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39003323</pmid><doi>10.1038/s41467-024-50281-5</doi><tpages>24</tpages><orcidid>https://orcid.org/0009-0000-7881-4440</orcidid><orcidid>https://orcid.org/0000-0002-9580-1980</orcidid><orcidid>https://orcid.org/0000-0002-6475-1140</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-07, Vol.15 (1), p.5898-24, Article 5898
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a4b68a6bade64f2b97f6c7af28a41953
source Open Access: PubMed Central; Nature Publishing Group; Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/100
13/51
38/39
45/91
631/136/142
631/136/1660/1986
631/136/532/1360
631/532/2064/2158
Benchmarks
Cell culture
Cell Differentiation
Cell Lineage
Cell Plasticity
Cystic fibrosis
Cystic Fibrosis Transmembrane Conductance Regulator - genetics
Cystic Fibrosis Transmembrane Conductance Regulator - metabolism
Differentiation (biology)
Epithelial cells
Epithelial Cells - cytology
Epithelial Cells - metabolism
Epithelium
Female
Fetus - cytology
Fetus - embryology
Fetuses
Gene Expression Regulation, Developmental
Humanities and Social Sciences
Humans
Lung - cytology
Lung - embryology
Lung diseases
Lungs
multidisciplinary
Neuroendocrine system
Pluripotency
Pluripotent Stem Cells - cytology
Pluripotent Stem Cells - metabolism
Progenitor cells
Science
Science (multidisciplinary)
Signal Transduction
Single-Cell Analysis
Stem cells
Trajectory analysis
Transcriptome
Transcriptomics
title Early human fetal lung atlas reveals the temporal dynamics of epithelial cell plasticity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A14%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20human%20fetal%20lung%20atlas%20reveals%20the%20temporal%20dynamics%20of%20epithelial%20cell%20plasticity&rft.jtitle=Nature%20communications&rft.au=Quach,%20Henry&rft.date=2024-07-13&rft.volume=15&rft.issue=1&rft.spage=5898&rft.epage=24&rft.pages=5898-24&rft.artnum=5898&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-50281-5&rft_dat=%3Cproquest_doaj_%3E3079907821%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-4d232a360dff4759eb735e6763679779492989a6978616c4be925af632f144813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3079907821&rft_id=info:pmid/39003323&rfr_iscdi=true