Loading…
Drift phase resolved diffusive radiation belt model: 2. implementation in a case of random electric potential fluctuations
In the first part of this work, we highlighted a drift-diffusion equation capable of resolving the magnetic local time dimension when describing the effects of trapped particle transport on radiation belt intensity. Here, we implement these general considerations in a special case. Specifically, we...
Saved in:
Published in: | Frontiers in astronomy and space sciences 2023-08, Vol.10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the first part of this work, we highlighted a drift-diffusion equation capable of resolving the magnetic local time dimension when describing the effects of trapped particle transport on radiation belt intensity. Here, we implement these general considerations in a special case. Specifically, we determine the various transport and diffusion coefficients required to solve the drift-diffusion equation for equatorial electrons drifting in a dipole magnetic field in the presence of a specific model of time-varying electric fields. Random electric potential fluctuations, described as white noise, drive fluctuations of trapped particle drift motion. We also run a numerical experiment that consists of tracking trapped particles’ drift motion. We use the results to illustrate the validity of the drift-diffusion equation by showing agreement in the solutions. Our findings depict how a structure initially localized in magnetic local time generates drift-periodic signatures that progressively dampen with time due to the combined effects of radial and azimuthal diffusions. In other words, we model the transition from a drift-dominated regime, to a diffusion-dominated regime. We also demonstrate that the drift-diffusion equation is equivalent to a standard radial diffusion equation once the distribution function is phase-mixed. The drift-diffusion equation will allow for radiation belt modeling with a better spatiotemporal resolution than radial diffusion models once realistic inputs, including localized transport and diffusion coefficients, are determined. |
---|---|
ISSN: | 2296-987X 2296-987X |
DOI: | 10.3389/fspas.2023.1232512 |