Loading…

Review of Researches on SCR Catalyst with Low Temperature and high Sulfur Tolerance and Theoretical Design

Selective catalytic reduction (SCR) of nitrogen oxides (NO x ) using ammonia (NH 3 ) is currently the main technology for flue gas denitration. However, the currently widely used commercial catalysts (such as V 2 O 5 -WO 3 / TiO 2 , V 2 O 5 -MoO 3 / TiO 2 , etc.) have the disadvantages of high opera...

Full description

Saved in:
Bibliographic Details
Published in:E3S web of conferences 2020-01, Vol.213, p.1012
Main Author: Zhang, Yufei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Selective catalytic reduction (SCR) of nitrogen oxides (NO x ) using ammonia (NH 3 ) is currently the main technology for flue gas denitration. However, the currently widely used commercial catalysts (such as V 2 O 5 -WO 3 / TiO 2 , V 2 O 5 -MoO 3 / TiO 2 , etc.) have the disadvantages of high operating temperature, narrow active temperature window, and high catalytic cost. Therefore, in recent years, researchers have devoted themselves to the development of low-cost and efficient low-temperature SCR catalytic materials. This paper summarizes the research progress of low-temperature (less than 250 °C) selective catalytic reduction of NO x by unsupported metal oxide catalysts, supported metal oxide catalysts, precious metals, and molecular sieve catalysts. Among them, manganese-based catalysts show good low-temperature selectivity and stability, and have good application prospects. Finally, the research directions of manganese low temperature SCR catalysts are prospected and theoretically designed based on the existing problems.
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/202021301012