Loading…
Peat Formation in Rewetted Fens as Reflected by Saturated n-Alkyl Acid Concentrations and Patterns
The conversion of cultivated fen peat soils into rewetted soils can mitigate global climate change. Specifically, carbon in newly formed peat can store atmospheric CO2 for a long time in soil, but alterations in the quality of soil organic matter are not well known. To shed light on the complex proc...
Saved in:
Published in: | Land (Basel) 2023-09, Vol.12 (9), p.1768 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The conversion of cultivated fen peat soils into rewetted soils can mitigate global climate change. Specifically, carbon in newly formed peat can store atmospheric CO2 for a long time in soil, but alterations in the quality of soil organic matter are not well known. To shed light on the complex processes of peat degradation or new formation under dry or rewetting conditions, we investigated and quantified saturated n-alkyl acids as an indicator compound class of peatlands response to the contrasting management practices. The concentrations of saturated n-alkyl acids from two soil layers of the drained and rewetted were determined in two soil layers of drained and rewetted fenland types such as Alder Carr forest, coastal peatland, and percolation mire. The analytical methods were solvent extraction, methylation with tetramethylammonium hydroxide, and gas chromatography/mass spectrometry. The saturated n-alkyl acid distribution pattern showed that the concentrations of long C-chain lengths were larger by factors of up to 28 relative to the short C-chain lengths. The effect of rewetting was reflected by the ratios of the summed concentrations of long (n-C21:0 to n-C34:0) to short (n-C10:0 to n-C20:0) C-chain saturated n-alkyl acids for drained and rewetted peat soil samples. These ratios were consistently lower in samples from the rewetted sites, indicating a higher input of microbial bio- and necromass to soil organic matter, likely from algae and anaerobic bacteria, under rewetting. The results suggest that the enrichment of microbial biomass and necromass in rewetted soils may be an important contributor to the formation of new peat in fenlands, irrespective of fenland type. |
---|---|
ISSN: | 2073-445X 2073-445X |
DOI: | 10.3390/land12091768 |