Loading…

Camouflaged Object Detection That Does Not Require Additional Priors

Camouflaged object detection (COD) is an arduous challenge due to the striking resemblance of camouflaged objects to their surroundings. The abundance of similar background information can significantly impede the efficiency of camouflaged object detection algorithms. Prior research in this domain h...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2024-03, Vol.14 (6), p.2621
Main Authors: Dong, Yuchen, Zhou, Heng, Li, Chengyang, Xie, Junjie, Xie, Yongqiang, Li, Zhongbo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c361t-f8b8e1055640ab51f4df368d7765c71fb6b1c60c0963bba9627d99cbf71bcd6e3
container_end_page
container_issue 6
container_start_page 2621
container_title Applied sciences
container_volume 14
creator Dong, Yuchen
Zhou, Heng
Li, Chengyang
Xie, Junjie
Xie, Yongqiang
Li, Zhongbo
description Camouflaged object detection (COD) is an arduous challenge due to the striking resemblance of camouflaged objects to their surroundings. The abundance of similar background information can significantly impede the efficiency of camouflaged object detection algorithms. Prior research in this domain has often relied on supplementary prior knowledge to guide model training. However, acquiring such prior knowledge is resource-intensive. Furthermore, the additional provided prior information is typically already embedded in the original image, but this information is underutilized. To address these issues, in this paper, we introduce a novel Camouflage Cues Guidance Network (CCGNet) for camouflaged object detection that does not rely on additional prior knowledge. Specifically, we use an adaptive approach to track the learning state of the model with respect to the camouflaged object and dynamically extract the cues of the camouflaged object from the original image. In addition, we introduce a foreground separation module and an edge refinement module to effectively utilize these camouflage cues, assisting the model in fully separating camouflaged objects and enabling precise edge prediction. Extensive experimental results demonstrate that our proposed methods can achieve superior performance compared with state-of-the-art approaches.
doi_str_mv 10.3390/app14062621
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a4ef71831531462aaf99648833f88e29</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A788243155</galeid><doaj_id>oai_doaj_org_article_a4ef71831531462aaf99648833f88e29</doaj_id><sourcerecordid>A788243155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-f8b8e1055640ab51f4df368d7765c71fb6b1c60c0963bba9627d99cbf71bcd6e3</originalsourceid><addsrcrecordid>eNpNUUlLQzEQfoiCoj35Bx54lGq2l-VY6lYQK1LPYbLVlLZpk9eD_97UinTmMOv3zQzTNNcY3VGq0D1sNpghTjjBJ80FQYIPKcPi9Mg_bwalLFAVhanE6KJ5GMMq7cIS5t61U7Pwtm8ffF9NTOt29gU1TL60b6lvP_x2F7NvR87FfRmW7XuOKZer5izAsvjBn71sPp8eZ-OX4ev0eTIevQ4t5bgfBmmkx6jrOENgOhyYC5RLJwTvrMDBcIMtRxYpTo0BxYlwSlkTBDbWcU8vm8mB1yVY6E2OK8jfOkHUv4mU5xpyH-3Sa2C-wiTFHcWME4CgFGdSUhqk9ERVrpsD1yan7c6XXi_SLtebiiZKCkY7QWTtujt0zaGSxnVIfQZb1flVtGntQ6z5kZCSsDqrq4DbA8DmVEr24X9NjPT-TfroTfQHw0mCbw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2987435728</pqid></control><display><type>article</type><title>Camouflaged Object Detection That Does Not Require Additional Priors</title><source>Access via ProQuest (Open Access)</source><creator>Dong, Yuchen ; Zhou, Heng ; Li, Chengyang ; Xie, Junjie ; Xie, Yongqiang ; Li, Zhongbo</creator><creatorcontrib>Dong, Yuchen ; Zhou, Heng ; Li, Chengyang ; Xie, Junjie ; Xie, Yongqiang ; Li, Zhongbo</creatorcontrib><description>Camouflaged object detection (COD) is an arduous challenge due to the striking resemblance of camouflaged objects to their surroundings. The abundance of similar background information can significantly impede the efficiency of camouflaged object detection algorithms. Prior research in this domain has often relied on supplementary prior knowledge to guide model training. However, acquiring such prior knowledge is resource-intensive. Furthermore, the additional provided prior information is typically already embedded in the original image, but this information is underutilized. To address these issues, in this paper, we introduce a novel Camouflage Cues Guidance Network (CCGNet) for camouflaged object detection that does not rely on additional prior knowledge. Specifically, we use an adaptive approach to track the learning state of the model with respect to the camouflaged object and dynamically extract the cues of the camouflaged object from the original image. In addition, we introduce a foreground separation module and an edge refinement module to effectively utilize these camouflage cues, assisting the model in fully separating camouflaged objects and enabling precise edge prediction. Extensive experimental results demonstrate that our proposed methods can achieve superior performance compared with state-of-the-art approaches.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app14062621</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; camouflage cues ; camouflaged object detection (COD) ; Datasets ; Deep learning ; Knowledge ; Localization ; Predation ; Semantics ; without prior knowledge</subject><ispartof>Applied sciences, 2024-03, Vol.14 (6), p.2621</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-f8b8e1055640ab51f4df368d7765c71fb6b1c60c0963bba9627d99cbf71bcd6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2987435728/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2987435728?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Dong, Yuchen</creatorcontrib><creatorcontrib>Zhou, Heng</creatorcontrib><creatorcontrib>Li, Chengyang</creatorcontrib><creatorcontrib>Xie, Junjie</creatorcontrib><creatorcontrib>Xie, Yongqiang</creatorcontrib><creatorcontrib>Li, Zhongbo</creatorcontrib><title>Camouflaged Object Detection That Does Not Require Additional Priors</title><title>Applied sciences</title><description>Camouflaged object detection (COD) is an arduous challenge due to the striking resemblance of camouflaged objects to their surroundings. The abundance of similar background information can significantly impede the efficiency of camouflaged object detection algorithms. Prior research in this domain has often relied on supplementary prior knowledge to guide model training. However, acquiring such prior knowledge is resource-intensive. Furthermore, the additional provided prior information is typically already embedded in the original image, but this information is underutilized. To address these issues, in this paper, we introduce a novel Camouflage Cues Guidance Network (CCGNet) for camouflaged object detection that does not rely on additional prior knowledge. Specifically, we use an adaptive approach to track the learning state of the model with respect to the camouflaged object and dynamically extract the cues of the camouflaged object from the original image. In addition, we introduce a foreground separation module and an edge refinement module to effectively utilize these camouflage cues, assisting the model in fully separating camouflaged objects and enabling precise edge prediction. Extensive experimental results demonstrate that our proposed methods can achieve superior performance compared with state-of-the-art approaches.</description><subject>Algorithms</subject><subject>camouflage cues</subject><subject>camouflaged object detection (COD)</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Knowledge</subject><subject>Localization</subject><subject>Predation</subject><subject>Semantics</subject><subject>without prior knowledge</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUlLQzEQfoiCoj35Bx54lGq2l-VY6lYQK1LPYbLVlLZpk9eD_97UinTmMOv3zQzTNNcY3VGq0D1sNpghTjjBJ80FQYIPKcPi9Mg_bwalLFAVhanE6KJ5GMMq7cIS5t61U7Pwtm8ffF9NTOt29gU1TL60b6lvP_x2F7NvR87FfRmW7XuOKZer5izAsvjBn71sPp8eZ-OX4ev0eTIevQ4t5bgfBmmkx6jrOENgOhyYC5RLJwTvrMDBcIMtRxYpTo0BxYlwSlkTBDbWcU8vm8mB1yVY6E2OK8jfOkHUv4mU5xpyH-3Sa2C-wiTFHcWME4CgFGdSUhqk9ERVrpsD1yan7c6XXi_SLtebiiZKCkY7QWTtujt0zaGSxnVIfQZb1flVtGntQ6z5kZCSsDqrq4DbA8DmVEr24X9NjPT-TfroTfQHw0mCbw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Dong, Yuchen</creator><creator>Zhou, Heng</creator><creator>Li, Chengyang</creator><creator>Xie, Junjie</creator><creator>Xie, Yongqiang</creator><creator>Li, Zhongbo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope></search><sort><creationdate>20240301</creationdate><title>Camouflaged Object Detection That Does Not Require Additional Priors</title><author>Dong, Yuchen ; Zhou, Heng ; Li, Chengyang ; Xie, Junjie ; Xie, Yongqiang ; Li, Zhongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-f8b8e1055640ab51f4df368d7765c71fb6b1c60c0963bba9627d99cbf71bcd6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>camouflage cues</topic><topic>camouflaged object detection (COD)</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Knowledge</topic><topic>Localization</topic><topic>Predation</topic><topic>Semantics</topic><topic>without prior knowledge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Yuchen</creatorcontrib><creatorcontrib>Zhou, Heng</creatorcontrib><creatorcontrib>Li, Chengyang</creatorcontrib><creatorcontrib>Xie, Junjie</creatorcontrib><creatorcontrib>Xie, Yongqiang</creatorcontrib><creatorcontrib>Li, Zhongbo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Yuchen</au><au>Zhou, Heng</au><au>Li, Chengyang</au><au>Xie, Junjie</au><au>Xie, Yongqiang</au><au>Li, Zhongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Camouflaged Object Detection That Does Not Require Additional Priors</atitle><jtitle>Applied sciences</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>14</volume><issue>6</issue><spage>2621</spage><pages>2621-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Camouflaged object detection (COD) is an arduous challenge due to the striking resemblance of camouflaged objects to their surroundings. The abundance of similar background information can significantly impede the efficiency of camouflaged object detection algorithms. Prior research in this domain has often relied on supplementary prior knowledge to guide model training. However, acquiring such prior knowledge is resource-intensive. Furthermore, the additional provided prior information is typically already embedded in the original image, but this information is underutilized. To address these issues, in this paper, we introduce a novel Camouflage Cues Guidance Network (CCGNet) for camouflaged object detection that does not rely on additional prior knowledge. Specifically, we use an adaptive approach to track the learning state of the model with respect to the camouflaged object and dynamically extract the cues of the camouflaged object from the original image. In addition, we introduce a foreground separation module and an edge refinement module to effectively utilize these camouflage cues, assisting the model in fully separating camouflaged objects and enabling precise edge prediction. Extensive experimental results demonstrate that our proposed methods can achieve superior performance compared with state-of-the-art approaches.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app14062621</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2024-03, Vol.14 (6), p.2621
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a4ef71831531462aaf99648833f88e29
source Access via ProQuest (Open Access)
subjects Algorithms
camouflage cues
camouflaged object detection (COD)
Datasets
Deep learning
Knowledge
Localization
Predation
Semantics
without prior knowledge
title Camouflaged Object Detection That Does Not Require Additional Priors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A02%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Camouflaged%20Object%20Detection%20That%20Does%20Not%20Require%20Additional%20Priors&rft.jtitle=Applied%20sciences&rft.au=Dong,%20Yuchen&rft.date=2024-03-01&rft.volume=14&rft.issue=6&rft.spage=2621&rft.pages=2621-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app14062621&rft_dat=%3Cgale_doaj_%3EA788243155%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-f8b8e1055640ab51f4df368d7765c71fb6b1c60c0963bba9627d99cbf71bcd6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2987435728&rft_id=info:pmid/&rft_galeid=A788243155&rfr_iscdi=true