Loading…

Further Developments of Bessel Functions via Conformable Calculus with Applications

The theory of Bessel functions is a rich subject due to its essential role in providing solutions for differential equations associated with many applications. As fractional calculus has become an efficient and successful tool for analyzing various mathematical and physical problems, the so-called f...

Full description

Saved in:
Bibliographic Details
Published in:Journal of function spaces 2021, Vol.2021, p.1-17
Main Authors: Abul-Ez, Mahmoud, Zayed, Mohra, Youssef, Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The theory of Bessel functions is a rich subject due to its essential role in providing solutions for differential equations associated with many applications. As fractional calculus has become an efficient and successful tool for analyzing various mathematical and physical problems, the so-called fractional Bessel functions were introduced and studied from different viewpoints. This paper is primarily devoted to the study of developing two aspects. The starting point is to present a fractional Laplace transform via conformable fractional-order Bessel functions (CFBFs). We establish several important formulas of the fractional Laplace Integral operator acting on the CFBFs of the first kind. With this in hand, we discuss the solutions of a generalized class of fractional kinetic equations associated with the CFBFs in view of our proposed fractional Laplace transform. Next, we derive an orthogonality relation of the CFBFs, which enables us to study an expansion of any analytic functions by means of CFBFs and to propose truncated CFBFs. A new approximate formula of conformable fractional derivative based on CFBFs is provided. Furthermore, we describe a useful scheme involving the collocation method to solve some conformable fractional linear (nonlinear) multiorder differential equations. Accordingly, several practical test problems are treated to illustrate the validity and utility of the proposed techniques and examine their approximate and exact solutions. The obtained solutions of some fractional differential equations improve the analog ones provided by various authors using different techniques. The provided algorithm may be beneficial to enrich the Bessel function theory via fractional calculus.
ISSN:2314-8896
2314-8888
DOI:10.1155/2021/6069201