Loading…

Nonlinear Flow Sensor Calibration with an Accurate Syringe

Flow sensors are required for monitoring patients on mechanical ventilation and in respiratory research. Proper calibration is important for ensuring accuracy and can be done with a precision syringe. This procedure, however, becomes complex for nonlinear flow sensors, which are commonly used. The o...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2018-07, Vol.18 (7), p.2163
Main Authors: Biselli, Paolo Jose Cesare, Nóbrega, Raquel Siqueira, Soriano, Francisco Garcia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Flow sensors are required for monitoring patients on mechanical ventilation and in respiratory research. Proper calibration is important for ensuring accuracy and can be done with a precision syringe. This procedure, however, becomes complex for nonlinear flow sensors, which are commonly used. The objective of the present work was to develop an algorithm to allow the calibration of nonlinear flow sensors using an accurate syringe. We first noticed that a power law equation could properly fit the pressure-flow relationship of nonlinear flow sensors. We then developed a software code to estimate the parameters for this equation using a 3 L syringe (calibration syringe). Finally, we tested the performance of a calibrated flow sensor using a different 3 L syringe (testing syringe) and a commercially available spirometer. After calibration, the sensor had a bias ranging from −1.7% to 3.0% and precision from 0.012 L to 0.039 L for volumes measured with the 3 L testing syringe. Calibrated sensor performance was at least as good as the commercial sensor. This calibration procedure can be done at the bedside for both clinical and research purposes, therefore improving the accuracy of nonlinear flow sensors.
ISSN:1424-8220
1424-8220
DOI:10.3390/s18072163