Loading…

Analysis of Wave Breaking on Gaofen-3 and TerraSAR-X SAR Image and Its Effect on Wave Retrieval

The main purpose of our work is to investigate the performance of wave breaking and its effect on wave retrieval in data acquired from the Chinese Gaofen-3 (GF-3) synthetic aperture radar (SAR) at C-band and the German TerraSAR-X (TS-X) at X-band. The SAR images available for this study included 140...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2023-02, Vol.15 (3), p.574
Main Authors: Zhong, Ruozhu, Shao, Weizeng, Zhao, Chi, Jiang, Xingwei, Zuo, Juncheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main purpose of our work is to investigate the performance of wave breaking and its effect on wave retrieval in data acquired from the Chinese Gaofen-3 (GF-3) synthetic aperture radar (SAR) at C-band and the German TerraSAR-X (TS-X) at X-band. The SAR images available for this study included 140 GF-3 images acquired in quad-polarization strip (QPS) mode and 50 dual-polarized (vertical-vertical (VV) and horizontal-horizontal (HH)) TS-X images acquired in stripmap (SM) mode. Moreover, these images were collocated with the waves simulated by the numeric WAVEWATCH-III (WW3) (version 5.16) model and HYbrid Coordinate Ocean Model (HYCOM) current. In particular, a few images covered the moored buoys monitored by the National Data Buoy Center (NDBC) of the National Oceanic and Atmospheric Administration (NOAA). The comparison between the WW3-simulated results and the significant wave heights (SWHs) from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data (ERA-5) showed that the correlation coefficient (COR) was 0.4–0.6 with a root mean squared error (RMSE) of about 0.2 m at SWHs of 0–4 m. The winds were inverted using VV-polarized geophysical model functions (GMFs), e.g., CSARMOD-GF for the GF-3 images and XMOD2 for the TS-X images. The Bragg resonant roughness in the normalized radar cross section (NRCS) was simulated using a radar backscattering model and the SAR-derived wind, WW3-simulated wave parameters, and HYCOM current. Then, the contribution of the non-polarized (NP) wave breaking to the SAR data was estimated by the VV-polarized NRCS, the HH-polarized NRCS, and the polarization ratio (PR) of the co-polarized Bragg resonant components in the NRCS. Because co-polarized Bragg resonant components in the NRCSs have poor results, due to the saturation for wind speeds greater than 20 m/s, the analysis of wave breaking is excluded at such conditions. The results revealed that the backscattering signal in the C-band was more sensitive to wave breaking than the backscattering signal in the X-band. Interestingly, the ratio had a linear correlation with wind speed. Moreover, the variation in the bias (inverted SWH minus WW3 simulation) showed that the bias increased as the wind speed (>8 m/s) and whitecap coverage (>0.005) increased. Following this rationale, wave retrieval during tropical cyclones should consider the influence of wave breaking.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15030574