Loading…
Molecular rotors with designed polar rotating groups possess mechanics-controllable wide-range rotational speed
Molecular rotors with controllable functions are promising for molecular machines and electronic devices. Especially, fast rotation in molecular rotor enables switchable molecular conformations and charge transport states for electronic applications. However, the key to molecular rotor-based electro...
Saved in:
Published in: | npj computational materials 2020-12, Vol.6 (1), p.1-9, Article 185 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-2c6a98d1605540dbdca81c85efcd1c0152c8fc2e4f7305f172b7646cf91206753 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-2c6a98d1605540dbdca81c85efcd1c0152c8fc2e4f7305f172b7646cf91206753 |
container_end_page | 9 |
container_issue | 1 |
container_start_page | 1 |
container_title | npj computational materials |
container_volume | 6 |
creator | Shao, Jian Zhu, Wenpeng Zhang, Xiaoyue Zheng, Yue |
description | Molecular rotors with controllable functions are promising for molecular machines and electronic devices. Especially, fast rotation in molecular rotor enables switchable molecular conformations and charge transport states for electronic applications. However, the key to molecular rotor-based electronic devices comes down to a trade-off between fast rotational speed and thermal stability. Fast rotation in molecular rotor requires a small energy barrier height, which disables its controllability under thermal excitation at room temperature. To overcome this trade-off dilemma, we design molecular rotors with co-axial polar rotating groups to achieve wide-range mechanically controllable rotational speed. The interplay between polar rotating groups and directional mechanical load enables a “stop-go” system with a wide-range rotational energy barrier. We show through density functional calculations that directional mechanical load can modulate the rotational speed of designed molecular rotors. At a temperature of 300 K, these molecular rotors operate at low rotational speed in native state and accelerates tremendously (up to 10
19
) under mechanical load. |
doi_str_mv | 10.1038/s41524-020-00457-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a50e420bcaad4881bf7c3cafa8a87d67</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a50e420bcaad4881bf7c3cafa8a87d67</doaj_id><sourcerecordid>2473301662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-2c6a98d1605540dbdca81c85efcd1c0152c8fc2e4f7305f172b7646cf91206753</originalsourceid><addsrcrecordid>eNp9kc1q3TAQhU1oISHJC3RlyNrtSJYleRlCfwIp2bRrMR6NHF8cy5V8KX37qvEl7aorDaNzvmHmVNU7Ae8FtPZDVqKTqgEJDYDqTKPPqgsJpWh7DW_-qc-r65wPACB6aaWCiyp-jTPTccZUp7jFlOuf0_ZUe87TuLCv13j6wm1axnpM8bjm0s2Zc66fmZ5wmSg3FJctxXnGYeaC8NwkXEY-OeOCc51XZn9VvQ04Z74-vZfV908fv919aR4eP9_f3T40pGS_NZI09tYLDV2nwA-e0AqyHQfygqDsSzaQZBVMC10QRg5GK02hFxK06drL6n7n-ogHt6bpGdMvF3FyL42YRodpm2hmhx2wkjAQolfWiiEYagkDWrTGa1NYNztrTfHHkfPmDvGYykrZSWXaFoTWsqjkrqJUrpM4vE4V4P7k5PacXMnJveTkdDG1uykXcblX-ov-j-s382SXzQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473301662</pqid></control><display><type>article</type><title>Molecular rotors with designed polar rotating groups possess mechanics-controllable wide-range rotational speed</title><source>ProQuest - Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Shao, Jian ; Zhu, Wenpeng ; Zhang, Xiaoyue ; Zheng, Yue</creator><creatorcontrib>Shao, Jian ; Zhu, Wenpeng ; Zhang, Xiaoyue ; Zheng, Yue</creatorcontrib><description>Molecular rotors with controllable functions are promising for molecular machines and electronic devices. Especially, fast rotation in molecular rotor enables switchable molecular conformations and charge transport states for electronic applications. However, the key to molecular rotor-based electronic devices comes down to a trade-off between fast rotational speed and thermal stability. Fast rotation in molecular rotor requires a small energy barrier height, which disables its controllability under thermal excitation at room temperature. To overcome this trade-off dilemma, we design molecular rotors with co-axial polar rotating groups to achieve wide-range mechanically controllable rotational speed. The interplay between polar rotating groups and directional mechanical load enables a “stop-go” system with a wide-range rotational energy barrier. We show through density functional calculations that directional mechanical load can modulate the rotational speed of designed molecular rotors. At a temperature of 300 K, these molecular rotors operate at low rotational speed in native state and accelerates tremendously (up to 10
19
) under mechanical load.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-020-00457-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/925/927/339 ; 639/925/927/998 ; Characterization and Evaluation of Materials ; Charge transport ; Chemistry and Materials Science ; Computational Intelligence ; Controllability ; Electronic devices ; Electronic equipment ; Materials Science ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mechanical properties ; Molecular machines ; Room temperature ; Rotation ; Rotational states ; Rotors ; Theoretical ; Thermal stability ; Tradeoffs</subject><ispartof>npj computational materials, 2020-12, Vol.6 (1), p.1-9, Article 185</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-2c6a98d1605540dbdca81c85efcd1c0152c8fc2e4f7305f172b7646cf91206753</citedby><cites>FETCH-LOGICAL-c429t-2c6a98d1605540dbdca81c85efcd1c0152c8fc2e4f7305f172b7646cf91206753</cites><orcidid>0000-0001-6557-3510 ; 0000-0002-6797-9845 ; 0000-0002-2165-7859</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2473301662/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2473301662?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Shao, Jian</creatorcontrib><creatorcontrib>Zhu, Wenpeng</creatorcontrib><creatorcontrib>Zhang, Xiaoyue</creatorcontrib><creatorcontrib>Zheng, Yue</creatorcontrib><title>Molecular rotors with designed polar rotating groups possess mechanics-controllable wide-range rotational speed</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>Molecular rotors with controllable functions are promising for molecular machines and electronic devices. Especially, fast rotation in molecular rotor enables switchable molecular conformations and charge transport states for electronic applications. However, the key to molecular rotor-based electronic devices comes down to a trade-off between fast rotational speed and thermal stability. Fast rotation in molecular rotor requires a small energy barrier height, which disables its controllability under thermal excitation at room temperature. To overcome this trade-off dilemma, we design molecular rotors with co-axial polar rotating groups to achieve wide-range mechanically controllable rotational speed. The interplay between polar rotating groups and directional mechanical load enables a “stop-go” system with a wide-range rotational energy barrier. We show through density functional calculations that directional mechanical load can modulate the rotational speed of designed molecular rotors. At a temperature of 300 K, these molecular rotors operate at low rotational speed in native state and accelerates tremendously (up to 10
19
) under mechanical load.</description><subject>639/925/927/339</subject><subject>639/925/927/998</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transport</subject><subject>Chemistry and Materials Science</subject><subject>Computational Intelligence</subject><subject>Controllability</subject><subject>Electronic devices</subject><subject>Electronic equipment</subject><subject>Materials Science</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mechanical properties</subject><subject>Molecular machines</subject><subject>Room temperature</subject><subject>Rotation</subject><subject>Rotational states</subject><subject>Rotors</subject><subject>Theoretical</subject><subject>Thermal stability</subject><subject>Tradeoffs</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1q3TAQhU1oISHJC3RlyNrtSJYleRlCfwIp2bRrMR6NHF8cy5V8KX37qvEl7aorDaNzvmHmVNU7Ae8FtPZDVqKTqgEJDYDqTKPPqgsJpWh7DW_-qc-r65wPACB6aaWCiyp-jTPTccZUp7jFlOuf0_ZUe87TuLCv13j6wm1axnpM8bjm0s2Zc66fmZ5wmSg3FJctxXnGYeaC8NwkXEY-OeOCc51XZn9VvQ04Z74-vZfV908fv919aR4eP9_f3T40pGS_NZI09tYLDV2nwA-e0AqyHQfygqDsSzaQZBVMC10QRg5GK02hFxK06drL6n7n-ogHt6bpGdMvF3FyL42YRodpm2hmhx2wkjAQolfWiiEYagkDWrTGa1NYNztrTfHHkfPmDvGYykrZSWXaFoTWsqjkrqJUrpM4vE4V4P7k5PacXMnJveTkdDG1uykXcblX-ov-j-s382SXzQ</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Shao, Jian</creator><creator>Zhu, Wenpeng</creator><creator>Zhang, Xiaoyue</creator><creator>Zheng, Yue</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6557-3510</orcidid><orcidid>https://orcid.org/0000-0002-6797-9845</orcidid><orcidid>https://orcid.org/0000-0002-2165-7859</orcidid></search><sort><creationdate>20201207</creationdate><title>Molecular rotors with designed polar rotating groups possess mechanics-controllable wide-range rotational speed</title><author>Shao, Jian ; Zhu, Wenpeng ; Zhang, Xiaoyue ; Zheng, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-2c6a98d1605540dbdca81c85efcd1c0152c8fc2e4f7305f172b7646cf91206753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/925/927/339</topic><topic>639/925/927/998</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transport</topic><topic>Chemistry and Materials Science</topic><topic>Computational Intelligence</topic><topic>Controllability</topic><topic>Electronic devices</topic><topic>Electronic equipment</topic><topic>Materials Science</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mechanical properties</topic><topic>Molecular machines</topic><topic>Room temperature</topic><topic>Rotation</topic><topic>Rotational states</topic><topic>Rotors</topic><topic>Theoretical</topic><topic>Thermal stability</topic><topic>Tradeoffs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Jian</creatorcontrib><creatorcontrib>Zhu, Wenpeng</creatorcontrib><creatorcontrib>Zhang, Xiaoyue</creatorcontrib><creatorcontrib>Zheng, Yue</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Jian</au><au>Zhu, Wenpeng</au><au>Zhang, Xiaoyue</au><au>Zheng, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular rotors with designed polar rotating groups possess mechanics-controllable wide-range rotational speed</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2020-12-07</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>185</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>Molecular rotors with controllable functions are promising for molecular machines and electronic devices. Especially, fast rotation in molecular rotor enables switchable molecular conformations and charge transport states for electronic applications. However, the key to molecular rotor-based electronic devices comes down to a trade-off between fast rotational speed and thermal stability. Fast rotation in molecular rotor requires a small energy barrier height, which disables its controllability under thermal excitation at room temperature. To overcome this trade-off dilemma, we design molecular rotors with co-axial polar rotating groups to achieve wide-range mechanically controllable rotational speed. The interplay between polar rotating groups and directional mechanical load enables a “stop-go” system with a wide-range rotational energy barrier. We show through density functional calculations that directional mechanical load can modulate the rotational speed of designed molecular rotors. At a temperature of 300 K, these molecular rotors operate at low rotational speed in native state and accelerates tremendously (up to 10
19
) under mechanical load.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-020-00457-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6557-3510</orcidid><orcidid>https://orcid.org/0000-0002-6797-9845</orcidid><orcidid>https://orcid.org/0000-0002-2165-7859</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2057-3960 |
ispartof | npj computational materials, 2020-12, Vol.6 (1), p.1-9, Article 185 |
issn | 2057-3960 2057-3960 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a50e420bcaad4881bf7c3cafa8a87d67 |
source | ProQuest - Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/925/927/339 639/925/927/998 Characterization and Evaluation of Materials Charge transport Chemistry and Materials Science Computational Intelligence Controllability Electronic devices Electronic equipment Materials Science Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mechanical properties Molecular machines Room temperature Rotation Rotational states Rotors Theoretical Thermal stability Tradeoffs |
title | Molecular rotors with designed polar rotating groups possess mechanics-controllable wide-range rotational speed |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20rotors%20with%20designed%20polar%20rotating%20groups%20possess%20mechanics-controllable%20wide-range%20rotational%20speed&rft.jtitle=npj%20computational%20materials&rft.au=Shao,%20Jian&rft.date=2020-12-07&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=185&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-020-00457-6&rft_dat=%3Cproquest_doaj_%3E2473301662%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-2c6a98d1605540dbdca81c85efcd1c0152c8fc2e4f7305f172b7646cf91206753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473301662&rft_id=info:pmid/&rfr_iscdi=true |