Loading…

Molecular rotors with designed polar rotating groups possess mechanics-controllable wide-range rotational speed

Molecular rotors with controllable functions are promising for molecular machines and electronic devices. Especially, fast rotation in molecular rotor enables switchable molecular conformations and charge transport states for electronic applications. However, the key to molecular rotor-based electro...

Full description

Saved in:
Bibliographic Details
Published in:npj computational materials 2020-12, Vol.6 (1), p.1-9, Article 185
Main Authors: Shao, Jian, Zhu, Wenpeng, Zhang, Xiaoyue, Zheng, Yue
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-2c6a98d1605540dbdca81c85efcd1c0152c8fc2e4f7305f172b7646cf91206753
cites cdi_FETCH-LOGICAL-c429t-2c6a98d1605540dbdca81c85efcd1c0152c8fc2e4f7305f172b7646cf91206753
container_end_page 9
container_issue 1
container_start_page 1
container_title npj computational materials
container_volume 6
creator Shao, Jian
Zhu, Wenpeng
Zhang, Xiaoyue
Zheng, Yue
description Molecular rotors with controllable functions are promising for molecular machines and electronic devices. Especially, fast rotation in molecular rotor enables switchable molecular conformations and charge transport states for electronic applications. However, the key to molecular rotor-based electronic devices comes down to a trade-off between fast rotational speed and thermal stability. Fast rotation in molecular rotor requires a small energy barrier height, which disables its controllability under thermal excitation at room temperature. To overcome this trade-off dilemma, we design molecular rotors with co-axial polar rotating groups to achieve wide-range mechanically controllable rotational speed. The interplay between polar rotating groups and directional mechanical load enables a “stop-go” system with a wide-range rotational energy barrier. We show through density functional calculations that directional mechanical load can modulate the rotational speed of designed molecular rotors. At a temperature of 300 K, these molecular rotors operate at low rotational speed in native state and accelerates tremendously (up to 10 19 ) under mechanical load.
doi_str_mv 10.1038/s41524-020-00457-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a50e420bcaad4881bf7c3cafa8a87d67</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a50e420bcaad4881bf7c3cafa8a87d67</doaj_id><sourcerecordid>2473301662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-2c6a98d1605540dbdca81c85efcd1c0152c8fc2e4f7305f172b7646cf91206753</originalsourceid><addsrcrecordid>eNp9kc1q3TAQhU1oISHJC3RlyNrtSJYleRlCfwIp2bRrMR6NHF8cy5V8KX37qvEl7aorDaNzvmHmVNU7Ae8FtPZDVqKTqgEJDYDqTKPPqgsJpWh7DW_-qc-r65wPACB6aaWCiyp-jTPTccZUp7jFlOuf0_ZUe87TuLCv13j6wm1axnpM8bjm0s2Zc66fmZ5wmSg3FJctxXnGYeaC8NwkXEY-OeOCc51XZn9VvQ04Z74-vZfV908fv919aR4eP9_f3T40pGS_NZI09tYLDV2nwA-e0AqyHQfygqDsSzaQZBVMC10QRg5GK02hFxK06drL6n7n-ogHt6bpGdMvF3FyL42YRodpm2hmhx2wkjAQolfWiiEYagkDWrTGa1NYNztrTfHHkfPmDvGYykrZSWXaFoTWsqjkrqJUrpM4vE4V4P7k5PacXMnJveTkdDG1uykXcblX-ov-j-s382SXzQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473301662</pqid></control><display><type>article</type><title>Molecular rotors with designed polar rotating groups possess mechanics-controllable wide-range rotational speed</title><source>ProQuest - Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Shao, Jian ; Zhu, Wenpeng ; Zhang, Xiaoyue ; Zheng, Yue</creator><creatorcontrib>Shao, Jian ; Zhu, Wenpeng ; Zhang, Xiaoyue ; Zheng, Yue</creatorcontrib><description>Molecular rotors with controllable functions are promising for molecular machines and electronic devices. Especially, fast rotation in molecular rotor enables switchable molecular conformations and charge transport states for electronic applications. However, the key to molecular rotor-based electronic devices comes down to a trade-off between fast rotational speed and thermal stability. Fast rotation in molecular rotor requires a small energy barrier height, which disables its controllability under thermal excitation at room temperature. To overcome this trade-off dilemma, we design molecular rotors with co-axial polar rotating groups to achieve wide-range mechanically controllable rotational speed. The interplay between polar rotating groups and directional mechanical load enables a “stop-go” system with a wide-range rotational energy barrier. We show through density functional calculations that directional mechanical load can modulate the rotational speed of designed molecular rotors. At a temperature of 300 K, these molecular rotors operate at low rotational speed in native state and accelerates tremendously (up to 10 19 ) under mechanical load.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-020-00457-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/925/927/339 ; 639/925/927/998 ; Characterization and Evaluation of Materials ; Charge transport ; Chemistry and Materials Science ; Computational Intelligence ; Controllability ; Electronic devices ; Electronic equipment ; Materials Science ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mechanical properties ; Molecular machines ; Room temperature ; Rotation ; Rotational states ; Rotors ; Theoretical ; Thermal stability ; Tradeoffs</subject><ispartof>npj computational materials, 2020-12, Vol.6 (1), p.1-9, Article 185</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-2c6a98d1605540dbdca81c85efcd1c0152c8fc2e4f7305f172b7646cf91206753</citedby><cites>FETCH-LOGICAL-c429t-2c6a98d1605540dbdca81c85efcd1c0152c8fc2e4f7305f172b7646cf91206753</cites><orcidid>0000-0001-6557-3510 ; 0000-0002-6797-9845 ; 0000-0002-2165-7859</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2473301662/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2473301662?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Shao, Jian</creatorcontrib><creatorcontrib>Zhu, Wenpeng</creatorcontrib><creatorcontrib>Zhang, Xiaoyue</creatorcontrib><creatorcontrib>Zheng, Yue</creatorcontrib><title>Molecular rotors with designed polar rotating groups possess mechanics-controllable wide-range rotational speed</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>Molecular rotors with controllable functions are promising for molecular machines and electronic devices. Especially, fast rotation in molecular rotor enables switchable molecular conformations and charge transport states for electronic applications. However, the key to molecular rotor-based electronic devices comes down to a trade-off between fast rotational speed and thermal stability. Fast rotation in molecular rotor requires a small energy barrier height, which disables its controllability under thermal excitation at room temperature. To overcome this trade-off dilemma, we design molecular rotors with co-axial polar rotating groups to achieve wide-range mechanically controllable rotational speed. The interplay between polar rotating groups and directional mechanical load enables a “stop-go” system with a wide-range rotational energy barrier. We show through density functional calculations that directional mechanical load can modulate the rotational speed of designed molecular rotors. At a temperature of 300 K, these molecular rotors operate at low rotational speed in native state and accelerates tremendously (up to 10 19 ) under mechanical load.</description><subject>639/925/927/339</subject><subject>639/925/927/998</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transport</subject><subject>Chemistry and Materials Science</subject><subject>Computational Intelligence</subject><subject>Controllability</subject><subject>Electronic devices</subject><subject>Electronic equipment</subject><subject>Materials Science</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mechanical properties</subject><subject>Molecular machines</subject><subject>Room temperature</subject><subject>Rotation</subject><subject>Rotational states</subject><subject>Rotors</subject><subject>Theoretical</subject><subject>Thermal stability</subject><subject>Tradeoffs</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1q3TAQhU1oISHJC3RlyNrtSJYleRlCfwIp2bRrMR6NHF8cy5V8KX37qvEl7aorDaNzvmHmVNU7Ae8FtPZDVqKTqgEJDYDqTKPPqgsJpWh7DW_-qc-r65wPACB6aaWCiyp-jTPTccZUp7jFlOuf0_ZUe87TuLCv13j6wm1axnpM8bjm0s2Zc66fmZ5wmSg3FJctxXnGYeaC8NwkXEY-OeOCc51XZn9VvQ04Z74-vZfV908fv919aR4eP9_f3T40pGS_NZI09tYLDV2nwA-e0AqyHQfygqDsSzaQZBVMC10QRg5GK02hFxK06drL6n7n-ogHt6bpGdMvF3FyL42YRodpm2hmhx2wkjAQolfWiiEYagkDWrTGa1NYNztrTfHHkfPmDvGYykrZSWXaFoTWsqjkrqJUrpM4vE4V4P7k5PacXMnJveTkdDG1uykXcblX-ov-j-s382SXzQ</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Shao, Jian</creator><creator>Zhu, Wenpeng</creator><creator>Zhang, Xiaoyue</creator><creator>Zheng, Yue</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6557-3510</orcidid><orcidid>https://orcid.org/0000-0002-6797-9845</orcidid><orcidid>https://orcid.org/0000-0002-2165-7859</orcidid></search><sort><creationdate>20201207</creationdate><title>Molecular rotors with designed polar rotating groups possess mechanics-controllable wide-range rotational speed</title><author>Shao, Jian ; Zhu, Wenpeng ; Zhang, Xiaoyue ; Zheng, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-2c6a98d1605540dbdca81c85efcd1c0152c8fc2e4f7305f172b7646cf91206753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/925/927/339</topic><topic>639/925/927/998</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transport</topic><topic>Chemistry and Materials Science</topic><topic>Computational Intelligence</topic><topic>Controllability</topic><topic>Electronic devices</topic><topic>Electronic equipment</topic><topic>Materials Science</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mechanical properties</topic><topic>Molecular machines</topic><topic>Room temperature</topic><topic>Rotation</topic><topic>Rotational states</topic><topic>Rotors</topic><topic>Theoretical</topic><topic>Thermal stability</topic><topic>Tradeoffs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Jian</creatorcontrib><creatorcontrib>Zhu, Wenpeng</creatorcontrib><creatorcontrib>Zhang, Xiaoyue</creatorcontrib><creatorcontrib>Zheng, Yue</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Jian</au><au>Zhu, Wenpeng</au><au>Zhang, Xiaoyue</au><au>Zheng, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular rotors with designed polar rotating groups possess mechanics-controllable wide-range rotational speed</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2020-12-07</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>185</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>Molecular rotors with controllable functions are promising for molecular machines and electronic devices. Especially, fast rotation in molecular rotor enables switchable molecular conformations and charge transport states for electronic applications. However, the key to molecular rotor-based electronic devices comes down to a trade-off between fast rotational speed and thermal stability. Fast rotation in molecular rotor requires a small energy barrier height, which disables its controllability under thermal excitation at room temperature. To overcome this trade-off dilemma, we design molecular rotors with co-axial polar rotating groups to achieve wide-range mechanically controllable rotational speed. The interplay between polar rotating groups and directional mechanical load enables a “stop-go” system with a wide-range rotational energy barrier. We show through density functional calculations that directional mechanical load can modulate the rotational speed of designed molecular rotors. At a temperature of 300 K, these molecular rotors operate at low rotational speed in native state and accelerates tremendously (up to 10 19 ) under mechanical load.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-020-00457-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6557-3510</orcidid><orcidid>https://orcid.org/0000-0002-6797-9845</orcidid><orcidid>https://orcid.org/0000-0002-2165-7859</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2057-3960
ispartof npj computational materials, 2020-12, Vol.6 (1), p.1-9, Article 185
issn 2057-3960
2057-3960
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a50e420bcaad4881bf7c3cafa8a87d67
source ProQuest - Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/925/927/339
639/925/927/998
Characterization and Evaluation of Materials
Charge transport
Chemistry and Materials Science
Computational Intelligence
Controllability
Electronic devices
Electronic equipment
Materials Science
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mechanical properties
Molecular machines
Room temperature
Rotation
Rotational states
Rotors
Theoretical
Thermal stability
Tradeoffs
title Molecular rotors with designed polar rotating groups possess mechanics-controllable wide-range rotational speed
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20rotors%20with%20designed%20polar%20rotating%20groups%20possess%20mechanics-controllable%20wide-range%20rotational%20speed&rft.jtitle=npj%20computational%20materials&rft.au=Shao,%20Jian&rft.date=2020-12-07&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=185&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-020-00457-6&rft_dat=%3Cproquest_doaj_%3E2473301662%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-2c6a98d1605540dbdca81c85efcd1c0152c8fc2e4f7305f172b7646cf91206753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473301662&rft_id=info:pmid/&rfr_iscdi=true