Loading…
EELGRASS MAPPING IN ATLANTIC CANADA USING WORLDVIEW-2 IMAGERY
Eelgrass (Zostera marina L.) is a marine angiosperm plant that grows throughout coastal areas in Atlantic Canada. Eelgrass meadows provide numerous ecosystem services, and while they have been acknowledged as important habitats, their location, extent, and health in Atlantic Canada are poorly unders...
Saved in:
Published in: | International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2020-08, Vol.XLIII-B3-2020, p.685-692 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 692 |
container_issue | |
container_start_page | 685 |
container_title | International archives of the photogrammetry, remote sensing and spatial information sciences. |
container_volume | XLIII-B3-2020 |
creator | Forsey, D. Leblon, B. LaRocque, A. Skinner, M. Douglas, A. |
description | Eelgrass (Zostera marina L.) is a marine angiosperm plant that grows throughout coastal areas in Atlantic Canada. Eelgrass meadows provide numerous ecosystem services, and while they have been acknowledged as important habitats, their location, extent, and health in Atlantic Canada are poorly understood. This study examined the effectiveness of WorldView-2 optical satellite imagery to map eelgrass presence in Tabusintac Bay, New Brunswick (Canada), an estuarine lagoon with extensive eelgrass coverage. The imagery was classified using two supervised classifiers: the parametric Maximum Likelihood Classifier (MLC) and the non-parametric Random Forests (RF) classifier. While Random Forests was expected to produce higher classification accuracies, it was shown not to be much better than MLC. The overall validation accuracy was 97.6% with RF and 99.8% with MLC. |
doi_str_mv | 10.5194/isprs-archives-XLIII-B3-2020-685-2020 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a5197f769e5c4a0c9a150d4334e9e2c0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a5197f769e5c4a0c9a150d4334e9e2c0</doaj_id><sourcerecordid>2435890084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2890-876e68f5d4e27240a0d797d40f61797d0e5e92029fd44a8e6e878cf5f0a4ebab3</originalsourceid><addsrcrecordid>eNpNkd1PgzAUxYnRxGXufyDxuXopLdAHHzqG2IR9ZB9On5oOirJMme1m4n8vMDU-9aT35NyT-3Mc5MEN9Ri5rezeWKRM_lp9aoueMiEEGvoIAwYURLQTZ04PN2bEwCfn__SlM7B2CwAeCQIKtOfcJUmWzvli4Y75bCYmqSsmLl9mfLIUsRvzCR9xd7VoB-vpPBs9imSNsCvGPE3mz1fORal2Vg9-3r6zuk-W8QPKpqmIeYZyHDFAURjoICppQTQOMQEFRcjCgkAZeK0ATTVrerOyIERFOtBRGOUlLUERvVEbv--IU25Rq63cm-pNmS9Zq0p2H7V5kcocqnynpWquFJZhwDTNiYKcKY9CQXyfaKZxDk3W9Slrb-qPo7YHua2P5r2pLzHxadMXItK4kpMrN7W1Rpd_Wz2QLQjZgZC_IGQHQg592d5fNiA64X8DK-d7KQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435890084</pqid></control><display><type>article</type><title>EELGRASS MAPPING IN ATLANTIC CANADA USING WORLDVIEW-2 IMAGERY</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Forsey, D. ; Leblon, B. ; LaRocque, A. ; Skinner, M. ; Douglas, A.</creator><creatorcontrib>Forsey, D. ; Leblon, B. ; LaRocque, A. ; Skinner, M. ; Douglas, A.</creatorcontrib><description>Eelgrass (Zostera marina L.) is a marine angiosperm plant that grows throughout coastal areas in Atlantic Canada. Eelgrass meadows provide numerous ecosystem services, and while they have been acknowledged as important habitats, their location, extent, and health in Atlantic Canada are poorly understood. This study examined the effectiveness of WorldView-2 optical satellite imagery to map eelgrass presence in Tabusintac Bay, New Brunswick (Canada), an estuarine lagoon with extensive eelgrass coverage. The imagery was classified using two supervised classifiers: the parametric Maximum Likelihood Classifier (MLC) and the non-parametric Random Forests (RF) classifier. While Random Forests was expected to produce higher classification accuracies, it was shown not to be much better than MLC. The overall validation accuracy was 97.6% with RF and 99.8% with MLC.</description><identifier>ISSN: 2194-9034</identifier><identifier>ISSN: 1682-1750</identifier><identifier>EISSN: 2194-9034</identifier><identifier>DOI: 10.5194/isprs-archives-XLIII-B3-2020-685-2020</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Aquatic plants ; Brackishwater environment ; Classifiers ; Coastal zone ; Ecosystem services ; Estuaries ; Imagery ; Lagoons ; Mapping ; Satellite imagery ; Sea grasses ; Spaceborne remote sensing</subject><ispartof>International archives of the photogrammetry, remote sensing and spatial information sciences., 2020-08, Vol.XLIII-B3-2020, p.685-692</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2435890084?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Forsey, D.</creatorcontrib><creatorcontrib>Leblon, B.</creatorcontrib><creatorcontrib>LaRocque, A.</creatorcontrib><creatorcontrib>Skinner, M.</creatorcontrib><creatorcontrib>Douglas, A.</creatorcontrib><title>EELGRASS MAPPING IN ATLANTIC CANADA USING WORLDVIEW-2 IMAGERY</title><title>International archives of the photogrammetry, remote sensing and spatial information sciences.</title><description>Eelgrass (Zostera marina L.) is a marine angiosperm plant that grows throughout coastal areas in Atlantic Canada. Eelgrass meadows provide numerous ecosystem services, and while they have been acknowledged as important habitats, their location, extent, and health in Atlantic Canada are poorly understood. This study examined the effectiveness of WorldView-2 optical satellite imagery to map eelgrass presence in Tabusintac Bay, New Brunswick (Canada), an estuarine lagoon with extensive eelgrass coverage. The imagery was classified using two supervised classifiers: the parametric Maximum Likelihood Classifier (MLC) and the non-parametric Random Forests (RF) classifier. While Random Forests was expected to produce higher classification accuracies, it was shown not to be much better than MLC. The overall validation accuracy was 97.6% with RF and 99.8% with MLC.</description><subject>Aquatic plants</subject><subject>Brackishwater environment</subject><subject>Classifiers</subject><subject>Coastal zone</subject><subject>Ecosystem services</subject><subject>Estuaries</subject><subject>Imagery</subject><subject>Lagoons</subject><subject>Mapping</subject><subject>Satellite imagery</subject><subject>Sea grasses</subject><subject>Spaceborne remote sensing</subject><issn>2194-9034</issn><issn>1682-1750</issn><issn>2194-9034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1PgzAUxYnRxGXufyDxuXopLdAHHzqG2IR9ZB9On5oOirJMme1m4n8vMDU-9aT35NyT-3Mc5MEN9Ri5rezeWKRM_lp9aoueMiEEGvoIAwYURLQTZ04PN2bEwCfn__SlM7B2CwAeCQIKtOfcJUmWzvli4Y75bCYmqSsmLl9mfLIUsRvzCR9xd7VoB-vpPBs9imSNsCvGPE3mz1fORal2Vg9-3r6zuk-W8QPKpqmIeYZyHDFAURjoICppQTQOMQEFRcjCgkAZeK0ATTVrerOyIERFOtBRGOUlLUERvVEbv--IU25Rq63cm-pNmS9Zq0p2H7V5kcocqnynpWquFJZhwDTNiYKcKY9CQXyfaKZxDk3W9Slrb-qPo7YHua2P5r2pLzHxadMXItK4kpMrN7W1Rpd_Wz2QLQjZgZC_IGQHQg592d5fNiA64X8DK-d7KQ</recordid><startdate>20200821</startdate><enddate>20200821</enddate><creator>Forsey, D.</creator><creator>Leblon, B.</creator><creator>LaRocque, A.</creator><creator>Skinner, M.</creator><creator>Douglas, A.</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20200821</creationdate><title>EELGRASS MAPPING IN ATLANTIC CANADA USING WORLDVIEW-2 IMAGERY</title><author>Forsey, D. ; Leblon, B. ; LaRocque, A. ; Skinner, M. ; Douglas, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2890-876e68f5d4e27240a0d797d40f61797d0e5e92029fd44a8e6e878cf5f0a4ebab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aquatic plants</topic><topic>Brackishwater environment</topic><topic>Classifiers</topic><topic>Coastal zone</topic><topic>Ecosystem services</topic><topic>Estuaries</topic><topic>Imagery</topic><topic>Lagoons</topic><topic>Mapping</topic><topic>Satellite imagery</topic><topic>Sea grasses</topic><topic>Spaceborne remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forsey, D.</creatorcontrib><creatorcontrib>Leblon, B.</creatorcontrib><creatorcontrib>LaRocque, A.</creatorcontrib><creatorcontrib>Skinner, M.</creatorcontrib><creatorcontrib>Douglas, A.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forsey, D.</au><au>Leblon, B.</au><au>LaRocque, A.</au><au>Skinner, M.</au><au>Douglas, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EELGRASS MAPPING IN ATLANTIC CANADA USING WORLDVIEW-2 IMAGERY</atitle><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle><date>2020-08-21</date><risdate>2020</risdate><volume>XLIII-B3-2020</volume><spage>685</spage><epage>692</epage><pages>685-692</pages><issn>2194-9034</issn><issn>1682-1750</issn><eissn>2194-9034</eissn><abstract>Eelgrass (Zostera marina L.) is a marine angiosperm plant that grows throughout coastal areas in Atlantic Canada. Eelgrass meadows provide numerous ecosystem services, and while they have been acknowledged as important habitats, their location, extent, and health in Atlantic Canada are poorly understood. This study examined the effectiveness of WorldView-2 optical satellite imagery to map eelgrass presence in Tabusintac Bay, New Brunswick (Canada), an estuarine lagoon with extensive eelgrass coverage. The imagery was classified using two supervised classifiers: the parametric Maximum Likelihood Classifier (MLC) and the non-parametric Random Forests (RF) classifier. While Random Forests was expected to produce higher classification accuracies, it was shown not to be much better than MLC. The overall validation accuracy was 97.6% with RF and 99.8% with MLC.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/isprs-archives-XLIII-B3-2020-685-2020</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-9034 |
ispartof | International archives of the photogrammetry, remote sensing and spatial information sciences., 2020-08, Vol.XLIII-B3-2020, p.685-692 |
issn | 2194-9034 1682-1750 2194-9034 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a5197f769e5c4a0c9a150d4334e9e2c0 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); EZB-FREE-00999 freely available EZB journals |
subjects | Aquatic plants Brackishwater environment Classifiers Coastal zone Ecosystem services Estuaries Imagery Lagoons Mapping Satellite imagery Sea grasses Spaceborne remote sensing |
title | EELGRASS MAPPING IN ATLANTIC CANADA USING WORLDVIEW-2 IMAGERY |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EELGRASS%20MAPPING%20IN%20ATLANTIC%20CANADA%20USING%20WORLDVIEW-2%20IMAGERY&rft.jtitle=International%20archives%20of%20the%20photogrammetry,%20remote%20sensing%20and%20spatial%20information%20sciences.&rft.au=Forsey,%20D.&rft.date=2020-08-21&rft.volume=XLIII-B3-2020&rft.spage=685&rft.epage=692&rft.pages=685-692&rft.issn=2194-9034&rft.eissn=2194-9034&rft_id=info:doi/10.5194/isprs-archives-XLIII-B3-2020-685-2020&rft_dat=%3Cproquest_doaj_%3E2435890084%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2890-876e68f5d4e27240a0d797d40f61797d0e5e92029fd44a8e6e878cf5f0a4ebab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2435890084&rft_id=info:pmid/&rfr_iscdi=true |