Loading…

EELGRASS MAPPING IN ATLANTIC CANADA USING WORLDVIEW-2 IMAGERY

Eelgrass (Zostera marina L.) is a marine angiosperm plant that grows throughout coastal areas in Atlantic Canada. Eelgrass meadows provide numerous ecosystem services, and while they have been acknowledged as important habitats, their location, extent, and health in Atlantic Canada are poorly unders...

Full description

Saved in:
Bibliographic Details
Published in:International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2020-08, Vol.XLIII-B3-2020, p.685-692
Main Authors: Forsey, D., Leblon, B., LaRocque, A., Skinner, M., Douglas, A.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 692
container_issue
container_start_page 685
container_title International archives of the photogrammetry, remote sensing and spatial information sciences.
container_volume XLIII-B3-2020
creator Forsey, D.
Leblon, B.
LaRocque, A.
Skinner, M.
Douglas, A.
description Eelgrass (Zostera marina L.) is a marine angiosperm plant that grows throughout coastal areas in Atlantic Canada. Eelgrass meadows provide numerous ecosystem services, and while they have been acknowledged as important habitats, their location, extent, and health in Atlantic Canada are poorly understood. This study examined the effectiveness of WorldView-2 optical satellite imagery to map eelgrass presence in Tabusintac Bay, New Brunswick (Canada), an estuarine lagoon with extensive eelgrass coverage. The imagery was classified using two supervised classifiers: the parametric Maximum Likelihood Classifier (MLC) and the non-parametric Random Forests (RF) classifier. While Random Forests was expected to produce higher classification accuracies, it was shown not to be much better than MLC. The overall validation accuracy was 97.6% with RF and 99.8% with MLC.
doi_str_mv 10.5194/isprs-archives-XLIII-B3-2020-685-2020
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a5197f769e5c4a0c9a150d4334e9e2c0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a5197f769e5c4a0c9a150d4334e9e2c0</doaj_id><sourcerecordid>2435890084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2890-876e68f5d4e27240a0d797d40f61797d0e5e92029fd44a8e6e878cf5f0a4ebab3</originalsourceid><addsrcrecordid>eNpNkd1PgzAUxYnRxGXufyDxuXopLdAHHzqG2IR9ZB9On5oOirJMme1m4n8vMDU-9aT35NyT-3Mc5MEN9Ri5rezeWKRM_lp9aoueMiEEGvoIAwYURLQTZ04PN2bEwCfn__SlM7B2CwAeCQIKtOfcJUmWzvli4Y75bCYmqSsmLl9mfLIUsRvzCR9xd7VoB-vpPBs9imSNsCvGPE3mz1fORal2Vg9-3r6zuk-W8QPKpqmIeYZyHDFAURjoICppQTQOMQEFRcjCgkAZeK0ATTVrerOyIERFOtBRGOUlLUERvVEbv--IU25Rq63cm-pNmS9Zq0p2H7V5kcocqnynpWquFJZhwDTNiYKcKY9CQXyfaKZxDk3W9Slrb-qPo7YHua2P5r2pLzHxadMXItK4kpMrN7W1Rpd_Wz2QLQjZgZC_IGQHQg592d5fNiA64X8DK-d7KQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435890084</pqid></control><display><type>article</type><title>EELGRASS MAPPING IN ATLANTIC CANADA USING WORLDVIEW-2 IMAGERY</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Forsey, D. ; Leblon, B. ; LaRocque, A. ; Skinner, M. ; Douglas, A.</creator><creatorcontrib>Forsey, D. ; Leblon, B. ; LaRocque, A. ; Skinner, M. ; Douglas, A.</creatorcontrib><description>Eelgrass (Zostera marina L.) is a marine angiosperm plant that grows throughout coastal areas in Atlantic Canada. Eelgrass meadows provide numerous ecosystem services, and while they have been acknowledged as important habitats, their location, extent, and health in Atlantic Canada are poorly understood. This study examined the effectiveness of WorldView-2 optical satellite imagery to map eelgrass presence in Tabusintac Bay, New Brunswick (Canada), an estuarine lagoon with extensive eelgrass coverage. The imagery was classified using two supervised classifiers: the parametric Maximum Likelihood Classifier (MLC) and the non-parametric Random Forests (RF) classifier. While Random Forests was expected to produce higher classification accuracies, it was shown not to be much better than MLC. The overall validation accuracy was 97.6% with RF and 99.8% with MLC.</description><identifier>ISSN: 2194-9034</identifier><identifier>ISSN: 1682-1750</identifier><identifier>EISSN: 2194-9034</identifier><identifier>DOI: 10.5194/isprs-archives-XLIII-B3-2020-685-2020</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Aquatic plants ; Brackishwater environment ; Classifiers ; Coastal zone ; Ecosystem services ; Estuaries ; Imagery ; Lagoons ; Mapping ; Satellite imagery ; Sea grasses ; Spaceborne remote sensing</subject><ispartof>International archives of the photogrammetry, remote sensing and spatial information sciences., 2020-08, Vol.XLIII-B3-2020, p.685-692</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2435890084?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Forsey, D.</creatorcontrib><creatorcontrib>Leblon, B.</creatorcontrib><creatorcontrib>LaRocque, A.</creatorcontrib><creatorcontrib>Skinner, M.</creatorcontrib><creatorcontrib>Douglas, A.</creatorcontrib><title>EELGRASS MAPPING IN ATLANTIC CANADA USING WORLDVIEW-2 IMAGERY</title><title>International archives of the photogrammetry, remote sensing and spatial information sciences.</title><description>Eelgrass (Zostera marina L.) is a marine angiosperm plant that grows throughout coastal areas in Atlantic Canada. Eelgrass meadows provide numerous ecosystem services, and while they have been acknowledged as important habitats, their location, extent, and health in Atlantic Canada are poorly understood. This study examined the effectiveness of WorldView-2 optical satellite imagery to map eelgrass presence in Tabusintac Bay, New Brunswick (Canada), an estuarine lagoon with extensive eelgrass coverage. The imagery was classified using two supervised classifiers: the parametric Maximum Likelihood Classifier (MLC) and the non-parametric Random Forests (RF) classifier. While Random Forests was expected to produce higher classification accuracies, it was shown not to be much better than MLC. The overall validation accuracy was 97.6% with RF and 99.8% with MLC.</description><subject>Aquatic plants</subject><subject>Brackishwater environment</subject><subject>Classifiers</subject><subject>Coastal zone</subject><subject>Ecosystem services</subject><subject>Estuaries</subject><subject>Imagery</subject><subject>Lagoons</subject><subject>Mapping</subject><subject>Satellite imagery</subject><subject>Sea grasses</subject><subject>Spaceborne remote sensing</subject><issn>2194-9034</issn><issn>1682-1750</issn><issn>2194-9034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1PgzAUxYnRxGXufyDxuXopLdAHHzqG2IR9ZB9On5oOirJMme1m4n8vMDU-9aT35NyT-3Mc5MEN9Ri5rezeWKRM_lp9aoueMiEEGvoIAwYURLQTZ04PN2bEwCfn__SlM7B2CwAeCQIKtOfcJUmWzvli4Y75bCYmqSsmLl9mfLIUsRvzCR9xd7VoB-vpPBs9imSNsCvGPE3mz1fORal2Vg9-3r6zuk-W8QPKpqmIeYZyHDFAURjoICppQTQOMQEFRcjCgkAZeK0ATTVrerOyIERFOtBRGOUlLUERvVEbv--IU25Rq63cm-pNmS9Zq0p2H7V5kcocqnynpWquFJZhwDTNiYKcKY9CQXyfaKZxDk3W9Slrb-qPo7YHua2P5r2pLzHxadMXItK4kpMrN7W1Rpd_Wz2QLQjZgZC_IGQHQg592d5fNiA64X8DK-d7KQ</recordid><startdate>20200821</startdate><enddate>20200821</enddate><creator>Forsey, D.</creator><creator>Leblon, B.</creator><creator>LaRocque, A.</creator><creator>Skinner, M.</creator><creator>Douglas, A.</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20200821</creationdate><title>EELGRASS MAPPING IN ATLANTIC CANADA USING WORLDVIEW-2 IMAGERY</title><author>Forsey, D. ; Leblon, B. ; LaRocque, A. ; Skinner, M. ; Douglas, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2890-876e68f5d4e27240a0d797d40f61797d0e5e92029fd44a8e6e878cf5f0a4ebab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aquatic plants</topic><topic>Brackishwater environment</topic><topic>Classifiers</topic><topic>Coastal zone</topic><topic>Ecosystem services</topic><topic>Estuaries</topic><topic>Imagery</topic><topic>Lagoons</topic><topic>Mapping</topic><topic>Satellite imagery</topic><topic>Sea grasses</topic><topic>Spaceborne remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forsey, D.</creatorcontrib><creatorcontrib>Leblon, B.</creatorcontrib><creatorcontrib>LaRocque, A.</creatorcontrib><creatorcontrib>Skinner, M.</creatorcontrib><creatorcontrib>Douglas, A.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forsey, D.</au><au>Leblon, B.</au><au>LaRocque, A.</au><au>Skinner, M.</au><au>Douglas, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EELGRASS MAPPING IN ATLANTIC CANADA USING WORLDVIEW-2 IMAGERY</atitle><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle><date>2020-08-21</date><risdate>2020</risdate><volume>XLIII-B3-2020</volume><spage>685</spage><epage>692</epage><pages>685-692</pages><issn>2194-9034</issn><issn>1682-1750</issn><eissn>2194-9034</eissn><abstract>Eelgrass (Zostera marina L.) is a marine angiosperm plant that grows throughout coastal areas in Atlantic Canada. Eelgrass meadows provide numerous ecosystem services, and while they have been acknowledged as important habitats, their location, extent, and health in Atlantic Canada are poorly understood. This study examined the effectiveness of WorldView-2 optical satellite imagery to map eelgrass presence in Tabusintac Bay, New Brunswick (Canada), an estuarine lagoon with extensive eelgrass coverage. The imagery was classified using two supervised classifiers: the parametric Maximum Likelihood Classifier (MLC) and the non-parametric Random Forests (RF) classifier. While Random Forests was expected to produce higher classification accuracies, it was shown not to be much better than MLC. The overall validation accuracy was 97.6% with RF and 99.8% with MLC.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/isprs-archives-XLIII-B3-2020-685-2020</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2194-9034
ispartof International archives of the photogrammetry, remote sensing and spatial information sciences., 2020-08, Vol.XLIII-B3-2020, p.685-692
issn 2194-9034
1682-1750
2194-9034
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a5197f769e5c4a0c9a150d4334e9e2c0
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); EZB-FREE-00999 freely available EZB journals
subjects Aquatic plants
Brackishwater environment
Classifiers
Coastal zone
Ecosystem services
Estuaries
Imagery
Lagoons
Mapping
Satellite imagery
Sea grasses
Spaceborne remote sensing
title EELGRASS MAPPING IN ATLANTIC CANADA USING WORLDVIEW-2 IMAGERY
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EELGRASS%20MAPPING%20IN%20ATLANTIC%20CANADA%20USING%20WORLDVIEW-2%20IMAGERY&rft.jtitle=International%20archives%20of%20the%20photogrammetry,%20remote%20sensing%20and%20spatial%20information%20sciences.&rft.au=Forsey,%20D.&rft.date=2020-08-21&rft.volume=XLIII-B3-2020&rft.spage=685&rft.epage=692&rft.pages=685-692&rft.issn=2194-9034&rft.eissn=2194-9034&rft_id=info:doi/10.5194/isprs-archives-XLIII-B3-2020-685-2020&rft_dat=%3Cproquest_doaj_%3E2435890084%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2890-876e68f5d4e27240a0d797d40f61797d0e5e92029fd44a8e6e878cf5f0a4ebab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2435890084&rft_id=info:pmid/&rfr_iscdi=true