Loading…

Deesterification of astaxanthin and intermediate esters from Haematococcus pluvialis subjected to stress

•This paper highlight the effect of enzymolysis and saponification deesterification processes of astaxanthin and its carotenoid precursors under high irradiance and nitrogen deprivation stress time conditions.•Carotenoid deesterification processes applied in this study, cholesterol esterase was show...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology reports (Amsterdam, Netherlands) Netherlands), 2019-09, Vol.23, p.e00351-e00351, Article e00351
Main Authors: Galarza, Janeth I., Arredondo Vega, Bertha O., Villón, Jimmy, Henríquez, Vitalia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4361-2108a9a210f11c35b50a65a4a12ea938a5dee51d08e5736486de32eaaacaae853
cites cdi_FETCH-LOGICAL-c4361-2108a9a210f11c35b50a65a4a12ea938a5dee51d08e5736486de32eaaacaae853
container_end_page e00351
container_issue
container_start_page e00351
container_title Biotechnology reports (Amsterdam, Netherlands)
container_volume 23
creator Galarza, Janeth I.
Arredondo Vega, Bertha O.
Villón, Jimmy
Henríquez, Vitalia
description •This paper highlight the effect of enzymolysis and saponification deesterification processes of astaxanthin and its carotenoid precursors under high irradiance and nitrogen deprivation stress time conditions.•Carotenoid deesterification processes applied in this study, cholesterol esterase was shown to facilitate astaxanthin deesterification (975.65 μg mg−1 DW) while saponification positively affected zeaxanthin (1038.68 μg mg−1 DW).•Deesterified astaxanthin was shown to be always accompanied by precursors zeaxanthin, canthaxanthin, and β-carotene.•Progressively decreasing β-carotene concentrations from T0 to T6 samples sustains even more that this pigment is indeed the main precursor of the astaxanthin metabolic pathway. Haematococcus pluvialis is the richest biological source of astaxanthin under unfavorable growing conditions. Many reports have discussed the optimal astaxanthin extraction methods. Free-astaxanthin could be still hindered by microalgae extracts composition or by prolonged extraction times. In this study we evaluated the effect of enzymolysis and saponification deesterification processes of astaxanthin and its carotenoid precursors under high irradiance and nitrogen deprivation stress time conditions. Results showed that cholesterol esterase facilitated astaxanthin deesterification (975.65 μg mg−1 DW) while saponification positively affected zeaxanthin (1038.68 μg mg−1 DW).
doi_str_mv 10.1016/j.btre.2019.e00351
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a55c615031f3450e9c53415a876efb18</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2215017X19302723</els_id><doaj_id>oai_doaj_org_article_a55c615031f3450e9c53415a876efb18</doaj_id><sourcerecordid>2259363047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4361-2108a9a210f11c35b50a65a4a12ea938a5dee51d08e5736486de32eaaacaae853</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EolXpH-CAfOSyW08cO4mEkFCBtlIlLiBxsybOpOsoiRfbWcG_x9uUqr1wGsvz5vP4PcbegtiCAH0xbNsUaFsIaLYkhFTwgp0WBaiNgOrnyyfnE3Ye4yCEAFkKpZvX7ESChEKL6pTtPhPFRMH1zmJyfua-5xgT_sY57dzMce64m7Nios5hIn4vj7wPfuLXSBMmb721S-T7cTk4HF3kcWkHsok6njyPec8Y37BXPY6Rzh_qGfvx9cv3y-vN7berm8tPtxtbSg2bAkSNDebSA1ipWiVQKywRCsJG1qg6IgWdqElVUpe17kjmFqJFpFrJM3azcjuPg9kHN2H4Yzw6c3_hw53BkJwdyaBSVoMSEnpZKkGNVbIEhXWlqW-hzqyPK2u_tPn7luYUcHwGfd6Z3c7c-YPRWjRV3WTA-wdA8L-W7JyZXLQ0jjiTX6IpCtVILUVZZWmxSm3wMQbqH58BYY6Jm8EcEzfHxM2aeB5693TBx5F_-WbBh1VA2fKDo2CidTTbnGXIAWVP3P_4fwGxIr-E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259363047</pqid></control><display><type>article</type><title>Deesterification of astaxanthin and intermediate esters from Haematococcus pluvialis subjected to stress</title><source>ScienceDirect Journals</source><source>PubMed Central</source><creator>Galarza, Janeth I. ; Arredondo Vega, Bertha O. ; Villón, Jimmy ; Henríquez, Vitalia</creator><creatorcontrib>Galarza, Janeth I. ; Arredondo Vega, Bertha O. ; Villón, Jimmy ; Henríquez, Vitalia</creatorcontrib><description>•This paper highlight the effect of enzymolysis and saponification deesterification processes of astaxanthin and its carotenoid precursors under high irradiance and nitrogen deprivation stress time conditions.•Carotenoid deesterification processes applied in this study, cholesterol esterase was shown to facilitate astaxanthin deesterification (975.65 μg mg−1 DW) while saponification positively affected zeaxanthin (1038.68 μg mg−1 DW).•Deesterified astaxanthin was shown to be always accompanied by precursors zeaxanthin, canthaxanthin, and β-carotene.•Progressively decreasing β-carotene concentrations from T0 to T6 samples sustains even more that this pigment is indeed the main precursor of the astaxanthin metabolic pathway. Haematococcus pluvialis is the richest biological source of astaxanthin under unfavorable growing conditions. Many reports have discussed the optimal astaxanthin extraction methods. Free-astaxanthin could be still hindered by microalgae extracts composition or by prolonged extraction times. In this study we evaluated the effect of enzymolysis and saponification deesterification processes of astaxanthin and its carotenoid precursors under high irradiance and nitrogen deprivation stress time conditions. Results showed that cholesterol esterase facilitated astaxanthin deesterification (975.65 μg mg−1 DW) while saponification positively affected zeaxanthin (1038.68 μg mg−1 DW).</description><identifier>ISSN: 2215-017X</identifier><identifier>EISSN: 2215-017X</identifier><identifier>DOI: 10.1016/j.btre.2019.e00351</identifier><identifier>PMID: 31312607</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Astaxanthin ; Carotenoids ; Deesterification ; Enzymology ; Saponification</subject><ispartof>Biotechnology reports (Amsterdam, Netherlands), 2019-09, Vol.23, p.e00351-e00351, Article e00351</ispartof><rights>2019 The Authors</rights><rights>2019 The Authors 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4361-2108a9a210f11c35b50a65a4a12ea938a5dee51d08e5736486de32eaaacaae853</citedby><cites>FETCH-LOGICAL-c4361-2108a9a210f11c35b50a65a4a12ea938a5dee51d08e5736486de32eaaacaae853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6609789/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2215017X19302723$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3547,27923,27924,45779,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31312607$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Galarza, Janeth I.</creatorcontrib><creatorcontrib>Arredondo Vega, Bertha O.</creatorcontrib><creatorcontrib>Villón, Jimmy</creatorcontrib><creatorcontrib>Henríquez, Vitalia</creatorcontrib><title>Deesterification of astaxanthin and intermediate esters from Haematococcus pluvialis subjected to stress</title><title>Biotechnology reports (Amsterdam, Netherlands)</title><addtitle>Biotechnol Rep (Amst)</addtitle><description>•This paper highlight the effect of enzymolysis and saponification deesterification processes of astaxanthin and its carotenoid precursors under high irradiance and nitrogen deprivation stress time conditions.•Carotenoid deesterification processes applied in this study, cholesterol esterase was shown to facilitate astaxanthin deesterification (975.65 μg mg−1 DW) while saponification positively affected zeaxanthin (1038.68 μg mg−1 DW).•Deesterified astaxanthin was shown to be always accompanied by precursors zeaxanthin, canthaxanthin, and β-carotene.•Progressively decreasing β-carotene concentrations from T0 to T6 samples sustains even more that this pigment is indeed the main precursor of the astaxanthin metabolic pathway. Haematococcus pluvialis is the richest biological source of astaxanthin under unfavorable growing conditions. Many reports have discussed the optimal astaxanthin extraction methods. Free-astaxanthin could be still hindered by microalgae extracts composition or by prolonged extraction times. In this study we evaluated the effect of enzymolysis and saponification deesterification processes of astaxanthin and its carotenoid precursors under high irradiance and nitrogen deprivation stress time conditions. Results showed that cholesterol esterase facilitated astaxanthin deesterification (975.65 μg mg−1 DW) while saponification positively affected zeaxanthin (1038.68 μg mg−1 DW).</description><subject>Astaxanthin</subject><subject>Carotenoids</subject><subject>Deesterification</subject><subject>Enzymology</subject><subject>Saponification</subject><issn>2215-017X</issn><issn>2215-017X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUFv1DAQhS0EolXpH-CAfOSyW08cO4mEkFCBtlIlLiBxsybOpOsoiRfbWcG_x9uUqr1wGsvz5vP4PcbegtiCAH0xbNsUaFsIaLYkhFTwgp0WBaiNgOrnyyfnE3Ye4yCEAFkKpZvX7ESChEKL6pTtPhPFRMH1zmJyfua-5xgT_sY57dzMce64m7Nios5hIn4vj7wPfuLXSBMmb721S-T7cTk4HF3kcWkHsok6njyPec8Y37BXPY6Rzh_qGfvx9cv3y-vN7berm8tPtxtbSg2bAkSNDebSA1ipWiVQKywRCsJG1qg6IgWdqElVUpe17kjmFqJFpFrJM3azcjuPg9kHN2H4Yzw6c3_hw53BkJwdyaBSVoMSEnpZKkGNVbIEhXWlqW-hzqyPK2u_tPn7luYUcHwGfd6Z3c7c-YPRWjRV3WTA-wdA8L-W7JyZXLQ0jjiTX6IpCtVILUVZZWmxSm3wMQbqH58BYY6Jm8EcEzfHxM2aeB5693TBx5F_-WbBh1VA2fKDo2CidTTbnGXIAWVP3P_4fwGxIr-E</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Galarza, Janeth I.</creator><creator>Arredondo Vega, Bertha O.</creator><creator>Villón, Jimmy</creator><creator>Henríquez, Vitalia</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20190901</creationdate><title>Deesterification of astaxanthin and intermediate esters from Haematococcus pluvialis subjected to stress</title><author>Galarza, Janeth I. ; Arredondo Vega, Bertha O. ; Villón, Jimmy ; Henríquez, Vitalia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4361-2108a9a210f11c35b50a65a4a12ea938a5dee51d08e5736486de32eaaacaae853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astaxanthin</topic><topic>Carotenoids</topic><topic>Deesterification</topic><topic>Enzymology</topic><topic>Saponification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galarza, Janeth I.</creatorcontrib><creatorcontrib>Arredondo Vega, Bertha O.</creatorcontrib><creatorcontrib>Villón, Jimmy</creatorcontrib><creatorcontrib>Henríquez, Vitalia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biotechnology reports (Amsterdam, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galarza, Janeth I.</au><au>Arredondo Vega, Bertha O.</au><au>Villón, Jimmy</au><au>Henríquez, Vitalia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deesterification of astaxanthin and intermediate esters from Haematococcus pluvialis subjected to stress</atitle><jtitle>Biotechnology reports (Amsterdam, Netherlands)</jtitle><addtitle>Biotechnol Rep (Amst)</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>23</volume><spage>e00351</spage><epage>e00351</epage><pages>e00351-e00351</pages><artnum>e00351</artnum><issn>2215-017X</issn><eissn>2215-017X</eissn><abstract>•This paper highlight the effect of enzymolysis and saponification deesterification processes of astaxanthin and its carotenoid precursors under high irradiance and nitrogen deprivation stress time conditions.•Carotenoid deesterification processes applied in this study, cholesterol esterase was shown to facilitate astaxanthin deesterification (975.65 μg mg−1 DW) while saponification positively affected zeaxanthin (1038.68 μg mg−1 DW).•Deesterified astaxanthin was shown to be always accompanied by precursors zeaxanthin, canthaxanthin, and β-carotene.•Progressively decreasing β-carotene concentrations from T0 to T6 samples sustains even more that this pigment is indeed the main precursor of the astaxanthin metabolic pathway. Haematococcus pluvialis is the richest biological source of astaxanthin under unfavorable growing conditions. Many reports have discussed the optimal astaxanthin extraction methods. Free-astaxanthin could be still hindered by microalgae extracts composition or by prolonged extraction times. In this study we evaluated the effect of enzymolysis and saponification deesterification processes of astaxanthin and its carotenoid precursors under high irradiance and nitrogen deprivation stress time conditions. Results showed that cholesterol esterase facilitated astaxanthin deesterification (975.65 μg mg−1 DW) while saponification positively affected zeaxanthin (1038.68 μg mg−1 DW).</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31312607</pmid><doi>10.1016/j.btre.2019.e00351</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2215-017X
ispartof Biotechnology reports (Amsterdam, Netherlands), 2019-09, Vol.23, p.e00351-e00351, Article e00351
issn 2215-017X
2215-017X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a55c615031f3450e9c53415a876efb18
source ScienceDirect Journals; PubMed Central
subjects Astaxanthin
Carotenoids
Deesterification
Enzymology
Saponification
title Deesterification of astaxanthin and intermediate esters from Haematococcus pluvialis subjected to stress
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deesterification%20of%20astaxanthin%20and%20intermediate%20esters%20from%20Haematococcus%20pluvialis%20subjected%20to%20stress&rft.jtitle=Biotechnology%20reports%20(Amsterdam,%20Netherlands)&rft.au=Galarza,%20Janeth%20I.&rft.date=2019-09-01&rft.volume=23&rft.spage=e00351&rft.epage=e00351&rft.pages=e00351-e00351&rft.artnum=e00351&rft.issn=2215-017X&rft.eissn=2215-017X&rft_id=info:doi/10.1016/j.btre.2019.e00351&rft_dat=%3Cproquest_doaj_%3E2259363047%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4361-2108a9a210f11c35b50a65a4a12ea938a5dee51d08e5736486de32eaaacaae853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259363047&rft_id=info:pmid/31312607&rfr_iscdi=true