Loading…
Deesterification of astaxanthin and intermediate esters from Haematococcus pluvialis subjected to stress
•This paper highlight the effect of enzymolysis and saponification deesterification processes of astaxanthin and its carotenoid precursors under high irradiance and nitrogen deprivation stress time conditions.•Carotenoid deesterification processes applied in this study, cholesterol esterase was show...
Saved in:
Published in: | Biotechnology reports (Amsterdam, Netherlands) Netherlands), 2019-09, Vol.23, p.e00351-e00351, Article e00351 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4361-2108a9a210f11c35b50a65a4a12ea938a5dee51d08e5736486de32eaaacaae853 |
---|---|
cites | cdi_FETCH-LOGICAL-c4361-2108a9a210f11c35b50a65a4a12ea938a5dee51d08e5736486de32eaaacaae853 |
container_end_page | e00351 |
container_issue | |
container_start_page | e00351 |
container_title | Biotechnology reports (Amsterdam, Netherlands) |
container_volume | 23 |
creator | Galarza, Janeth I. Arredondo Vega, Bertha O. Villón, Jimmy Henríquez, Vitalia |
description | •This paper highlight the effect of enzymolysis and saponification deesterification processes of astaxanthin and its carotenoid precursors under high irradiance and nitrogen deprivation stress time conditions.•Carotenoid deesterification processes applied in this study, cholesterol esterase was shown to facilitate astaxanthin deesterification (975.65 μg mg−1 DW) while saponification positively affected zeaxanthin (1038.68 μg mg−1 DW).•Deesterified astaxanthin was shown to be always accompanied by precursors zeaxanthin, canthaxanthin, and β-carotene.•Progressively decreasing β-carotene concentrations from T0 to T6 samples sustains even more that this pigment is indeed the main precursor of the astaxanthin metabolic pathway.
Haematococcus pluvialis is the richest biological source of astaxanthin under unfavorable growing conditions. Many reports have discussed the optimal astaxanthin extraction methods. Free-astaxanthin could be still hindered by microalgae extracts composition or by prolonged extraction times. In this study we evaluated the effect of enzymolysis and saponification deesterification processes of astaxanthin and its carotenoid precursors under high irradiance and nitrogen deprivation stress time conditions. Results showed that cholesterol esterase facilitated astaxanthin deesterification (975.65 μg mg−1 DW) while saponification positively affected zeaxanthin (1038.68 μg mg−1 DW). |
doi_str_mv | 10.1016/j.btre.2019.e00351 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a55c615031f3450e9c53415a876efb18</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2215017X19302723</els_id><doaj_id>oai_doaj_org_article_a55c615031f3450e9c53415a876efb18</doaj_id><sourcerecordid>2259363047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4361-2108a9a210f11c35b50a65a4a12ea938a5dee51d08e5736486de32eaaacaae853</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EolXpH-CAfOSyW08cO4mEkFCBtlIlLiBxsybOpOsoiRfbWcG_x9uUqr1wGsvz5vP4PcbegtiCAH0xbNsUaFsIaLYkhFTwgp0WBaiNgOrnyyfnE3Ye4yCEAFkKpZvX7ESChEKL6pTtPhPFRMH1zmJyfua-5xgT_sY57dzMce64m7Nios5hIn4vj7wPfuLXSBMmb721S-T7cTk4HF3kcWkHsok6njyPec8Y37BXPY6Rzh_qGfvx9cv3y-vN7berm8tPtxtbSg2bAkSNDebSA1ipWiVQKywRCsJG1qg6IgWdqElVUpe17kjmFqJFpFrJM3azcjuPg9kHN2H4Yzw6c3_hw53BkJwdyaBSVoMSEnpZKkGNVbIEhXWlqW-hzqyPK2u_tPn7luYUcHwGfd6Z3c7c-YPRWjRV3WTA-wdA8L-W7JyZXLQ0jjiTX6IpCtVILUVZZWmxSm3wMQbqH58BYY6Jm8EcEzfHxM2aeB5693TBx5F_-WbBh1VA2fKDo2CidTTbnGXIAWVP3P_4fwGxIr-E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259363047</pqid></control><display><type>article</type><title>Deesterification of astaxanthin and intermediate esters from Haematococcus pluvialis subjected to stress</title><source>ScienceDirect Journals</source><source>PubMed Central</source><creator>Galarza, Janeth I. ; Arredondo Vega, Bertha O. ; Villón, Jimmy ; Henríquez, Vitalia</creator><creatorcontrib>Galarza, Janeth I. ; Arredondo Vega, Bertha O. ; Villón, Jimmy ; Henríquez, Vitalia</creatorcontrib><description>•This paper highlight the effect of enzymolysis and saponification deesterification processes of astaxanthin and its carotenoid precursors under high irradiance and nitrogen deprivation stress time conditions.•Carotenoid deesterification processes applied in this study, cholesterol esterase was shown to facilitate astaxanthin deesterification (975.65 μg mg−1 DW) while saponification positively affected zeaxanthin (1038.68 μg mg−1 DW).•Deesterified astaxanthin was shown to be always accompanied by precursors zeaxanthin, canthaxanthin, and β-carotene.•Progressively decreasing β-carotene concentrations from T0 to T6 samples sustains even more that this pigment is indeed the main precursor of the astaxanthin metabolic pathway.
Haematococcus pluvialis is the richest biological source of astaxanthin under unfavorable growing conditions. Many reports have discussed the optimal astaxanthin extraction methods. Free-astaxanthin could be still hindered by microalgae extracts composition or by prolonged extraction times. In this study we evaluated the effect of enzymolysis and saponification deesterification processes of astaxanthin and its carotenoid precursors under high irradiance and nitrogen deprivation stress time conditions. Results showed that cholesterol esterase facilitated astaxanthin deesterification (975.65 μg mg−1 DW) while saponification positively affected zeaxanthin (1038.68 μg mg−1 DW).</description><identifier>ISSN: 2215-017X</identifier><identifier>EISSN: 2215-017X</identifier><identifier>DOI: 10.1016/j.btre.2019.e00351</identifier><identifier>PMID: 31312607</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Astaxanthin ; Carotenoids ; Deesterification ; Enzymology ; Saponification</subject><ispartof>Biotechnology reports (Amsterdam, Netherlands), 2019-09, Vol.23, p.e00351-e00351, Article e00351</ispartof><rights>2019 The Authors</rights><rights>2019 The Authors 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4361-2108a9a210f11c35b50a65a4a12ea938a5dee51d08e5736486de32eaaacaae853</citedby><cites>FETCH-LOGICAL-c4361-2108a9a210f11c35b50a65a4a12ea938a5dee51d08e5736486de32eaaacaae853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6609789/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2215017X19302723$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3547,27923,27924,45779,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31312607$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Galarza, Janeth I.</creatorcontrib><creatorcontrib>Arredondo Vega, Bertha O.</creatorcontrib><creatorcontrib>Villón, Jimmy</creatorcontrib><creatorcontrib>Henríquez, Vitalia</creatorcontrib><title>Deesterification of astaxanthin and intermediate esters from Haematococcus pluvialis subjected to stress</title><title>Biotechnology reports (Amsterdam, Netherlands)</title><addtitle>Biotechnol Rep (Amst)</addtitle><description>•This paper highlight the effect of enzymolysis and saponification deesterification processes of astaxanthin and its carotenoid precursors under high irradiance and nitrogen deprivation stress time conditions.•Carotenoid deesterification processes applied in this study, cholesterol esterase was shown to facilitate astaxanthin deesterification (975.65 μg mg−1 DW) while saponification positively affected zeaxanthin (1038.68 μg mg−1 DW).•Deesterified astaxanthin was shown to be always accompanied by precursors zeaxanthin, canthaxanthin, and β-carotene.•Progressively decreasing β-carotene concentrations from T0 to T6 samples sustains even more that this pigment is indeed the main precursor of the astaxanthin metabolic pathway.
Haematococcus pluvialis is the richest biological source of astaxanthin under unfavorable growing conditions. Many reports have discussed the optimal astaxanthin extraction methods. Free-astaxanthin could be still hindered by microalgae extracts composition or by prolonged extraction times. In this study we evaluated the effect of enzymolysis and saponification deesterification processes of astaxanthin and its carotenoid precursors under high irradiance and nitrogen deprivation stress time conditions. Results showed that cholesterol esterase facilitated astaxanthin deesterification (975.65 μg mg−1 DW) while saponification positively affected zeaxanthin (1038.68 μg mg−1 DW).</description><subject>Astaxanthin</subject><subject>Carotenoids</subject><subject>Deesterification</subject><subject>Enzymology</subject><subject>Saponification</subject><issn>2215-017X</issn><issn>2215-017X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUFv1DAQhS0EolXpH-CAfOSyW08cO4mEkFCBtlIlLiBxsybOpOsoiRfbWcG_x9uUqr1wGsvz5vP4PcbegtiCAH0xbNsUaFsIaLYkhFTwgp0WBaiNgOrnyyfnE3Ye4yCEAFkKpZvX7ESChEKL6pTtPhPFRMH1zmJyfua-5xgT_sY57dzMce64m7Nios5hIn4vj7wPfuLXSBMmb721S-T7cTk4HF3kcWkHsok6njyPec8Y37BXPY6Rzh_qGfvx9cv3y-vN7berm8tPtxtbSg2bAkSNDebSA1ipWiVQKywRCsJG1qg6IgWdqElVUpe17kjmFqJFpFrJM3azcjuPg9kHN2H4Yzw6c3_hw53BkJwdyaBSVoMSEnpZKkGNVbIEhXWlqW-hzqyPK2u_tPn7luYUcHwGfd6Z3c7c-YPRWjRV3WTA-wdA8L-W7JyZXLQ0jjiTX6IpCtVILUVZZWmxSm3wMQbqH58BYY6Jm8EcEzfHxM2aeB5693TBx5F_-WbBh1VA2fKDo2CidTTbnGXIAWVP3P_4fwGxIr-E</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Galarza, Janeth I.</creator><creator>Arredondo Vega, Bertha O.</creator><creator>Villón, Jimmy</creator><creator>Henríquez, Vitalia</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20190901</creationdate><title>Deesterification of astaxanthin and intermediate esters from Haematococcus pluvialis subjected to stress</title><author>Galarza, Janeth I. ; Arredondo Vega, Bertha O. ; Villón, Jimmy ; Henríquez, Vitalia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4361-2108a9a210f11c35b50a65a4a12ea938a5dee51d08e5736486de32eaaacaae853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astaxanthin</topic><topic>Carotenoids</topic><topic>Deesterification</topic><topic>Enzymology</topic><topic>Saponification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galarza, Janeth I.</creatorcontrib><creatorcontrib>Arredondo Vega, Bertha O.</creatorcontrib><creatorcontrib>Villón, Jimmy</creatorcontrib><creatorcontrib>Henríquez, Vitalia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biotechnology reports (Amsterdam, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galarza, Janeth I.</au><au>Arredondo Vega, Bertha O.</au><au>Villón, Jimmy</au><au>Henríquez, Vitalia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deesterification of astaxanthin and intermediate esters from Haematococcus pluvialis subjected to stress</atitle><jtitle>Biotechnology reports (Amsterdam, Netherlands)</jtitle><addtitle>Biotechnol Rep (Amst)</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>23</volume><spage>e00351</spage><epage>e00351</epage><pages>e00351-e00351</pages><artnum>e00351</artnum><issn>2215-017X</issn><eissn>2215-017X</eissn><abstract>•This paper highlight the effect of enzymolysis and saponification deesterification processes of astaxanthin and its carotenoid precursors under high irradiance and nitrogen deprivation stress time conditions.•Carotenoid deesterification processes applied in this study, cholesterol esterase was shown to facilitate astaxanthin deesterification (975.65 μg mg−1 DW) while saponification positively affected zeaxanthin (1038.68 μg mg−1 DW).•Deesterified astaxanthin was shown to be always accompanied by precursors zeaxanthin, canthaxanthin, and β-carotene.•Progressively decreasing β-carotene concentrations from T0 to T6 samples sustains even more that this pigment is indeed the main precursor of the astaxanthin metabolic pathway.
Haematococcus pluvialis is the richest biological source of astaxanthin under unfavorable growing conditions. Many reports have discussed the optimal astaxanthin extraction methods. Free-astaxanthin could be still hindered by microalgae extracts composition or by prolonged extraction times. In this study we evaluated the effect of enzymolysis and saponification deesterification processes of astaxanthin and its carotenoid precursors under high irradiance and nitrogen deprivation stress time conditions. Results showed that cholesterol esterase facilitated astaxanthin deesterification (975.65 μg mg−1 DW) while saponification positively affected zeaxanthin (1038.68 μg mg−1 DW).</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31312607</pmid><doi>10.1016/j.btre.2019.e00351</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2215-017X |
ispartof | Biotechnology reports (Amsterdam, Netherlands), 2019-09, Vol.23, p.e00351-e00351, Article e00351 |
issn | 2215-017X 2215-017X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a55c615031f3450e9c53415a876efb18 |
source | ScienceDirect Journals; PubMed Central |
subjects | Astaxanthin Carotenoids Deesterification Enzymology Saponification |
title | Deesterification of astaxanthin and intermediate esters from Haematococcus pluvialis subjected to stress |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deesterification%20of%20astaxanthin%20and%20intermediate%20esters%20from%20Haematococcus%20pluvialis%20subjected%20to%20stress&rft.jtitle=Biotechnology%20reports%20(Amsterdam,%20Netherlands)&rft.au=Galarza,%20Janeth%20I.&rft.date=2019-09-01&rft.volume=23&rft.spage=e00351&rft.epage=e00351&rft.pages=e00351-e00351&rft.artnum=e00351&rft.issn=2215-017X&rft.eissn=2215-017X&rft_id=info:doi/10.1016/j.btre.2019.e00351&rft_dat=%3Cproquest_doaj_%3E2259363047%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4361-2108a9a210f11c35b50a65a4a12ea938a5dee51d08e5736486de32eaaacaae853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259363047&rft_id=info:pmid/31312607&rfr_iscdi=true |