Loading…

Electronic Excited States from Physically Constrained Machine Learning

Data-driven techniques are increasingly used to replace electronic-structure calculations of matter. In this context, a relevant question is whether machine learning (ML) should be applied directly to predict the desired properties or combined explicitly with physically grounded operations. We prese...

Full description

Saved in:
Bibliographic Details
Published in:ACS central science 2024-03, Vol.10 (3), p.637-648
Main Authors: Cignoni, Edoardo, Suman, Divya, Nigam, Jigyasa, Cupellini, Lorenzo, Mennucci, Benedetta, Ceriotti, Michele
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a403t-ce8d49a4610d3af6f6ace781c9e2cfd6029343e2b0a14b04ce6642acaa941ea3
container_end_page 648
container_issue 3
container_start_page 637
container_title ACS central science
container_volume 10
creator Cignoni, Edoardo
Suman, Divya
Nigam, Jigyasa
Cupellini, Lorenzo
Mennucci, Benedetta
Ceriotti, Michele
description Data-driven techniques are increasingly used to replace electronic-structure calculations of matter. In this context, a relevant question is whether machine learning (ML) should be applied directly to predict the desired properties or combined explicitly with physically grounded operations. We present an example of an integrated modeling approach in which a symmetry-adapted ML model of an effective Hamiltonian is trained to reproduce electronic excitations from a quantum-mechanical calculation. The resulting model can make predictions for molecules that are much larger and more complex than those on which it is trained and allows for dramatic computational savings by indirectly targeting the outputs of well-converged calculations while using a parametrization corresponding to a minimal atom-centered basis. These results emphasize the merits of intertwining data-driven techniques with physical approximations, improving the transferability and interpretability of ML models without affecting their accuracy and computational efficiency and providing a blueprint for developing ML-augmented electronic-structure methods.
doi_str_mv 10.1021/acscentsci.3c01480
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a564c7ec764d492c9466d597b41fb2d4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a564c7ec764d492c9466d597b41fb2d4</doaj_id><sourcerecordid>3031137112</sourcerecordid><originalsourceid>FETCH-LOGICAL-a403t-ce8d49a4610d3af6f6ace781c9e2cfd6029343e2b0a14b04ce6642acaa941ea3</originalsourceid><addsrcrecordid>eNp9kc1LAzEQxYMoKuo_4EH26KU1X5vtHqXUD6go6D3Mzs5qynajSQr2vzfaWm-eMoTfe8O8x9i54GPBpbgCjEhDiujGCrnQE77HjqWq9KiqS7G_m7U6YmcxLjjPkDGlrA7ZkZqUZa04P2Y3s54wBT84LGaf6BK1xXOCRLHogl8WT2_r6BD6fl1M_RBTADdk5AHwLQ_FnCAMbng9ZQcd9JHOtu8Je7mZvUzvRvPH2_vp9XwEmqs0Qpq0ugZtBG8VdKYzgFRNBNYksWsNl7XSimTDQeiGayRjtAQEqLUgUCfsfmPbeljY9-CWENbWg7M_Hz68WgjJYU8WSqOxIqyMzisl1vn4tqyrRouuka3OXpcbr_fgP1YUk126HGnfw0B-Fa3iSghVCSEzKjcoBh9joG63WnD73Yb9a8Nu28iii63_qllSu5P8Zp-B8QbIYrvwqzDk5P5z_AIzTJew</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031137112</pqid></control><display><type>article</type><title>Electronic Excited States from Physically Constrained Machine Learning</title><source>Open Access: PubMed Central</source><source>ProQuest - Publicly Available Content Database</source><creator>Cignoni, Edoardo ; Suman, Divya ; Nigam, Jigyasa ; Cupellini, Lorenzo ; Mennucci, Benedetta ; Ceriotti, Michele</creator><creatorcontrib>Cignoni, Edoardo ; Suman, Divya ; Nigam, Jigyasa ; Cupellini, Lorenzo ; Mennucci, Benedetta ; Ceriotti, Michele</creatorcontrib><description>Data-driven techniques are increasingly used to replace electronic-structure calculations of matter. In this context, a relevant question is whether machine learning (ML) should be applied directly to predict the desired properties or combined explicitly with physically grounded operations. We present an example of an integrated modeling approach in which a symmetry-adapted ML model of an effective Hamiltonian is trained to reproduce electronic excitations from a quantum-mechanical calculation. The resulting model can make predictions for molecules that are much larger and more complex than those on which it is trained and allows for dramatic computational savings by indirectly targeting the outputs of well-converged calculations while using a parametrization corresponding to a minimal atom-centered basis. These results emphasize the merits of intertwining data-driven techniques with physical approximations, improving the transferability and interpretability of ML models without affecting their accuracy and computational efficiency and providing a blueprint for developing ML-augmented electronic-structure methods.</description><identifier>ISSN: 2374-7943</identifier><identifier>EISSN: 2374-7951</identifier><identifier>DOI: 10.1021/acscentsci.3c01480</identifier><identifier>PMID: 38559300</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS central science, 2024-03, Vol.10 (3), p.637-648</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a403t-ce8d49a4610d3af6f6ace781c9e2cfd6029343e2b0a14b04ce6642acaa941ea3</cites><orcidid>0000-0002-4394-0129 ; 0009-0009-1483-8959 ; 0000-0003-2571-2832 ; 0000-0003-0848-2908 ; 0000-0001-6857-4332 ; 0000-0001-5392-8097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,37013</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38559300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cignoni, Edoardo</creatorcontrib><creatorcontrib>Suman, Divya</creatorcontrib><creatorcontrib>Nigam, Jigyasa</creatorcontrib><creatorcontrib>Cupellini, Lorenzo</creatorcontrib><creatorcontrib>Mennucci, Benedetta</creatorcontrib><creatorcontrib>Ceriotti, Michele</creatorcontrib><title>Electronic Excited States from Physically Constrained Machine Learning</title><title>ACS central science</title><addtitle>ACS Cent. Sci</addtitle><description>Data-driven techniques are increasingly used to replace electronic-structure calculations of matter. In this context, a relevant question is whether machine learning (ML) should be applied directly to predict the desired properties or combined explicitly with physically grounded operations. We present an example of an integrated modeling approach in which a symmetry-adapted ML model of an effective Hamiltonian is trained to reproduce electronic excitations from a quantum-mechanical calculation. The resulting model can make predictions for molecules that are much larger and more complex than those on which it is trained and allows for dramatic computational savings by indirectly targeting the outputs of well-converged calculations while using a parametrization corresponding to a minimal atom-centered basis. These results emphasize the merits of intertwining data-driven techniques with physical approximations, improving the transferability and interpretability of ML models without affecting their accuracy and computational efficiency and providing a blueprint for developing ML-augmented electronic-structure methods.</description><issn>2374-7943</issn><issn>2374-7951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1LAzEQxYMoKuo_4EH26KU1X5vtHqXUD6go6D3Mzs5qynajSQr2vzfaWm-eMoTfe8O8x9i54GPBpbgCjEhDiujGCrnQE77HjqWq9KiqS7G_m7U6YmcxLjjPkDGlrA7ZkZqUZa04P2Y3s54wBT84LGaf6BK1xXOCRLHogl8WT2_r6BD6fl1M_RBTADdk5AHwLQ_FnCAMbng9ZQcd9JHOtu8Je7mZvUzvRvPH2_vp9XwEmqs0Qpq0ugZtBG8VdKYzgFRNBNYksWsNl7XSimTDQeiGayRjtAQEqLUgUCfsfmPbeljY9-CWENbWg7M_Hz68WgjJYU8WSqOxIqyMzisl1vn4tqyrRouuka3OXpcbr_fgP1YUk126HGnfw0B-Fa3iSghVCSEzKjcoBh9joG63WnD73Yb9a8Nu28iii63_qllSu5P8Zp-B8QbIYrvwqzDk5P5z_AIzTJew</recordid><startdate>20240327</startdate><enddate>20240327</enddate><creator>Cignoni, Edoardo</creator><creator>Suman, Divya</creator><creator>Nigam, Jigyasa</creator><creator>Cupellini, Lorenzo</creator><creator>Mennucci, Benedetta</creator><creator>Ceriotti, Michele</creator><general>American Chemical Society</general><scope>N~.</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4394-0129</orcidid><orcidid>https://orcid.org/0009-0009-1483-8959</orcidid><orcidid>https://orcid.org/0000-0003-2571-2832</orcidid><orcidid>https://orcid.org/0000-0003-0848-2908</orcidid><orcidid>https://orcid.org/0000-0001-6857-4332</orcidid><orcidid>https://orcid.org/0000-0001-5392-8097</orcidid></search><sort><creationdate>20240327</creationdate><title>Electronic Excited States from Physically Constrained Machine Learning</title><author>Cignoni, Edoardo ; Suman, Divya ; Nigam, Jigyasa ; Cupellini, Lorenzo ; Mennucci, Benedetta ; Ceriotti, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a403t-ce8d49a4610d3af6f6ace781c9e2cfd6029343e2b0a14b04ce6642acaa941ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cignoni, Edoardo</creatorcontrib><creatorcontrib>Suman, Divya</creatorcontrib><creatorcontrib>Nigam, Jigyasa</creatorcontrib><creatorcontrib>Cupellini, Lorenzo</creatorcontrib><creatorcontrib>Mennucci, Benedetta</creatorcontrib><creatorcontrib>Ceriotti, Michele</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ACS central science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cignoni, Edoardo</au><au>Suman, Divya</au><au>Nigam, Jigyasa</au><au>Cupellini, Lorenzo</au><au>Mennucci, Benedetta</au><au>Ceriotti, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Excited States from Physically Constrained Machine Learning</atitle><jtitle>ACS central science</jtitle><addtitle>ACS Cent. Sci</addtitle><date>2024-03-27</date><risdate>2024</risdate><volume>10</volume><issue>3</issue><spage>637</spage><epage>648</epage><pages>637-648</pages><issn>2374-7943</issn><eissn>2374-7951</eissn><abstract>Data-driven techniques are increasingly used to replace electronic-structure calculations of matter. In this context, a relevant question is whether machine learning (ML) should be applied directly to predict the desired properties or combined explicitly with physically grounded operations. We present an example of an integrated modeling approach in which a symmetry-adapted ML model of an effective Hamiltonian is trained to reproduce electronic excitations from a quantum-mechanical calculation. The resulting model can make predictions for molecules that are much larger and more complex than those on which it is trained and allows for dramatic computational savings by indirectly targeting the outputs of well-converged calculations while using a parametrization corresponding to a minimal atom-centered basis. These results emphasize the merits of intertwining data-driven techniques with physical approximations, improving the transferability and interpretability of ML models without affecting their accuracy and computational efficiency and providing a blueprint for developing ML-augmented electronic-structure methods.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38559300</pmid><doi>10.1021/acscentsci.3c01480</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4394-0129</orcidid><orcidid>https://orcid.org/0009-0009-1483-8959</orcidid><orcidid>https://orcid.org/0000-0003-2571-2832</orcidid><orcidid>https://orcid.org/0000-0003-0848-2908</orcidid><orcidid>https://orcid.org/0000-0001-6857-4332</orcidid><orcidid>https://orcid.org/0000-0001-5392-8097</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2374-7943
ispartof ACS central science, 2024-03, Vol.10 (3), p.637-648
issn 2374-7943
2374-7951
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a564c7ec764d492c9466d597b41fb2d4
source Open Access: PubMed Central; ProQuest - Publicly Available Content Database
title Electronic Excited States from Physically Constrained Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Excited%20States%20from%20Physically%20Constrained%20Machine%20Learning&rft.jtitle=ACS%20central%20science&rft.au=Cignoni,%20Edoardo&rft.date=2024-03-27&rft.volume=10&rft.issue=3&rft.spage=637&rft.epage=648&rft.pages=637-648&rft.issn=2374-7943&rft.eissn=2374-7951&rft_id=info:doi/10.1021/acscentsci.3c01480&rft_dat=%3Cproquest_doaj_%3E3031137112%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a403t-ce8d49a4610d3af6f6ace781c9e2cfd6029343e2b0a14b04ce6642acaa941ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3031137112&rft_id=info:pmid/38559300&rfr_iscdi=true