Loading…
Electronic Excited States from Physically Constrained Machine Learning
Data-driven techniques are increasingly used to replace electronic-structure calculations of matter. In this context, a relevant question is whether machine learning (ML) should be applied directly to predict the desired properties or combined explicitly with physically grounded operations. We prese...
Saved in:
Published in: | ACS central science 2024-03, Vol.10 (3), p.637-648 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a403t-ce8d49a4610d3af6f6ace781c9e2cfd6029343e2b0a14b04ce6642acaa941ea3 |
container_end_page | 648 |
container_issue | 3 |
container_start_page | 637 |
container_title | ACS central science |
container_volume | 10 |
creator | Cignoni, Edoardo Suman, Divya Nigam, Jigyasa Cupellini, Lorenzo Mennucci, Benedetta Ceriotti, Michele |
description | Data-driven techniques are increasingly used to replace electronic-structure calculations of matter. In this context, a relevant question is whether machine learning (ML) should be applied directly to predict the desired properties or combined explicitly with physically grounded operations. We present an example of an integrated modeling approach in which a symmetry-adapted ML model of an effective Hamiltonian is trained to reproduce electronic excitations from a quantum-mechanical calculation. The resulting model can make predictions for molecules that are much larger and more complex than those on which it is trained and allows for dramatic computational savings by indirectly targeting the outputs of well-converged calculations while using a parametrization corresponding to a minimal atom-centered basis. These results emphasize the merits of intertwining data-driven techniques with physical approximations, improving the transferability and interpretability of ML models without affecting their accuracy and computational efficiency and providing a blueprint for developing ML-augmented electronic-structure methods. |
doi_str_mv | 10.1021/acscentsci.3c01480 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a564c7ec764d492c9466d597b41fb2d4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a564c7ec764d492c9466d597b41fb2d4</doaj_id><sourcerecordid>3031137112</sourcerecordid><originalsourceid>FETCH-LOGICAL-a403t-ce8d49a4610d3af6f6ace781c9e2cfd6029343e2b0a14b04ce6642acaa941ea3</originalsourceid><addsrcrecordid>eNp9kc1LAzEQxYMoKuo_4EH26KU1X5vtHqXUD6go6D3Mzs5qynajSQr2vzfaWm-eMoTfe8O8x9i54GPBpbgCjEhDiujGCrnQE77HjqWq9KiqS7G_m7U6YmcxLjjPkDGlrA7ZkZqUZa04P2Y3s54wBT84LGaf6BK1xXOCRLHogl8WT2_r6BD6fl1M_RBTADdk5AHwLQ_FnCAMbng9ZQcd9JHOtu8Je7mZvUzvRvPH2_vp9XwEmqs0Qpq0ugZtBG8VdKYzgFRNBNYksWsNl7XSimTDQeiGayRjtAQEqLUgUCfsfmPbeljY9-CWENbWg7M_Hz68WgjJYU8WSqOxIqyMzisl1vn4tqyrRouuka3OXpcbr_fgP1YUk126HGnfw0B-Fa3iSghVCSEzKjcoBh9joG63WnD73Yb9a8Nu28iii63_qllSu5P8Zp-B8QbIYrvwqzDk5P5z_AIzTJew</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031137112</pqid></control><display><type>article</type><title>Electronic Excited States from Physically Constrained Machine Learning</title><source>Open Access: PubMed Central</source><source>ProQuest - Publicly Available Content Database</source><creator>Cignoni, Edoardo ; Suman, Divya ; Nigam, Jigyasa ; Cupellini, Lorenzo ; Mennucci, Benedetta ; Ceriotti, Michele</creator><creatorcontrib>Cignoni, Edoardo ; Suman, Divya ; Nigam, Jigyasa ; Cupellini, Lorenzo ; Mennucci, Benedetta ; Ceriotti, Michele</creatorcontrib><description>Data-driven techniques are increasingly used to replace electronic-structure calculations of matter. In this context, a relevant question is whether machine learning (ML) should be applied directly to predict the desired properties or combined explicitly with physically grounded operations. We present an example of an integrated modeling approach in which a symmetry-adapted ML model of an effective Hamiltonian is trained to reproduce electronic excitations from a quantum-mechanical calculation. The resulting model can make predictions for molecules that are much larger and more complex than those on which it is trained and allows for dramatic computational savings by indirectly targeting the outputs of well-converged calculations while using a parametrization corresponding to a minimal atom-centered basis. These results emphasize the merits of intertwining data-driven techniques with physical approximations, improving the transferability and interpretability of ML models without affecting their accuracy and computational efficiency and providing a blueprint for developing ML-augmented electronic-structure methods.</description><identifier>ISSN: 2374-7943</identifier><identifier>EISSN: 2374-7951</identifier><identifier>DOI: 10.1021/acscentsci.3c01480</identifier><identifier>PMID: 38559300</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS central science, 2024-03, Vol.10 (3), p.637-648</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a403t-ce8d49a4610d3af6f6ace781c9e2cfd6029343e2b0a14b04ce6642acaa941ea3</cites><orcidid>0000-0002-4394-0129 ; 0009-0009-1483-8959 ; 0000-0003-2571-2832 ; 0000-0003-0848-2908 ; 0000-0001-6857-4332 ; 0000-0001-5392-8097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,37013</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38559300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cignoni, Edoardo</creatorcontrib><creatorcontrib>Suman, Divya</creatorcontrib><creatorcontrib>Nigam, Jigyasa</creatorcontrib><creatorcontrib>Cupellini, Lorenzo</creatorcontrib><creatorcontrib>Mennucci, Benedetta</creatorcontrib><creatorcontrib>Ceriotti, Michele</creatorcontrib><title>Electronic Excited States from Physically Constrained Machine Learning</title><title>ACS central science</title><addtitle>ACS Cent. Sci</addtitle><description>Data-driven techniques are increasingly used to replace electronic-structure calculations of matter. In this context, a relevant question is whether machine learning (ML) should be applied directly to predict the desired properties or combined explicitly with physically grounded operations. We present an example of an integrated modeling approach in which a symmetry-adapted ML model of an effective Hamiltonian is trained to reproduce electronic excitations from a quantum-mechanical calculation. The resulting model can make predictions for molecules that are much larger and more complex than those on which it is trained and allows for dramatic computational savings by indirectly targeting the outputs of well-converged calculations while using a parametrization corresponding to a minimal atom-centered basis. These results emphasize the merits of intertwining data-driven techniques with physical approximations, improving the transferability and interpretability of ML models without affecting their accuracy and computational efficiency and providing a blueprint for developing ML-augmented electronic-structure methods.</description><issn>2374-7943</issn><issn>2374-7951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1LAzEQxYMoKuo_4EH26KU1X5vtHqXUD6go6D3Mzs5qynajSQr2vzfaWm-eMoTfe8O8x9i54GPBpbgCjEhDiujGCrnQE77HjqWq9KiqS7G_m7U6YmcxLjjPkDGlrA7ZkZqUZa04P2Y3s54wBT84LGaf6BK1xXOCRLHogl8WT2_r6BD6fl1M_RBTADdk5AHwLQ_FnCAMbng9ZQcd9JHOtu8Je7mZvUzvRvPH2_vp9XwEmqs0Qpq0ugZtBG8VdKYzgFRNBNYksWsNl7XSimTDQeiGayRjtAQEqLUgUCfsfmPbeljY9-CWENbWg7M_Hz68WgjJYU8WSqOxIqyMzisl1vn4tqyrRouuka3OXpcbr_fgP1YUk126HGnfw0B-Fa3iSghVCSEzKjcoBh9joG63WnD73Yb9a8Nu28iii63_qllSu5P8Zp-B8QbIYrvwqzDk5P5z_AIzTJew</recordid><startdate>20240327</startdate><enddate>20240327</enddate><creator>Cignoni, Edoardo</creator><creator>Suman, Divya</creator><creator>Nigam, Jigyasa</creator><creator>Cupellini, Lorenzo</creator><creator>Mennucci, Benedetta</creator><creator>Ceriotti, Michele</creator><general>American Chemical Society</general><scope>N~.</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4394-0129</orcidid><orcidid>https://orcid.org/0009-0009-1483-8959</orcidid><orcidid>https://orcid.org/0000-0003-2571-2832</orcidid><orcidid>https://orcid.org/0000-0003-0848-2908</orcidid><orcidid>https://orcid.org/0000-0001-6857-4332</orcidid><orcidid>https://orcid.org/0000-0001-5392-8097</orcidid></search><sort><creationdate>20240327</creationdate><title>Electronic Excited States from Physically Constrained Machine Learning</title><author>Cignoni, Edoardo ; Suman, Divya ; Nigam, Jigyasa ; Cupellini, Lorenzo ; Mennucci, Benedetta ; Ceriotti, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a403t-ce8d49a4610d3af6f6ace781c9e2cfd6029343e2b0a14b04ce6642acaa941ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cignoni, Edoardo</creatorcontrib><creatorcontrib>Suman, Divya</creatorcontrib><creatorcontrib>Nigam, Jigyasa</creatorcontrib><creatorcontrib>Cupellini, Lorenzo</creatorcontrib><creatorcontrib>Mennucci, Benedetta</creatorcontrib><creatorcontrib>Ceriotti, Michele</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ACS central science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cignoni, Edoardo</au><au>Suman, Divya</au><au>Nigam, Jigyasa</au><au>Cupellini, Lorenzo</au><au>Mennucci, Benedetta</au><au>Ceriotti, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Excited States from Physically Constrained Machine Learning</atitle><jtitle>ACS central science</jtitle><addtitle>ACS Cent. Sci</addtitle><date>2024-03-27</date><risdate>2024</risdate><volume>10</volume><issue>3</issue><spage>637</spage><epage>648</epage><pages>637-648</pages><issn>2374-7943</issn><eissn>2374-7951</eissn><abstract>Data-driven techniques are increasingly used to replace electronic-structure calculations of matter. In this context, a relevant question is whether machine learning (ML) should be applied directly to predict the desired properties or combined explicitly with physically grounded operations. We present an example of an integrated modeling approach in which a symmetry-adapted ML model of an effective Hamiltonian is trained to reproduce electronic excitations from a quantum-mechanical calculation. The resulting model can make predictions for molecules that are much larger and more complex than those on which it is trained and allows for dramatic computational savings by indirectly targeting the outputs of well-converged calculations while using a parametrization corresponding to a minimal atom-centered basis. These results emphasize the merits of intertwining data-driven techniques with physical approximations, improving the transferability and interpretability of ML models without affecting their accuracy and computational efficiency and providing a blueprint for developing ML-augmented electronic-structure methods.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38559300</pmid><doi>10.1021/acscentsci.3c01480</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4394-0129</orcidid><orcidid>https://orcid.org/0009-0009-1483-8959</orcidid><orcidid>https://orcid.org/0000-0003-2571-2832</orcidid><orcidid>https://orcid.org/0000-0003-0848-2908</orcidid><orcidid>https://orcid.org/0000-0001-6857-4332</orcidid><orcidid>https://orcid.org/0000-0001-5392-8097</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2374-7943 |
ispartof | ACS central science, 2024-03, Vol.10 (3), p.637-648 |
issn | 2374-7943 2374-7951 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a564c7ec764d492c9466d597b41fb2d4 |
source | Open Access: PubMed Central; ProQuest - Publicly Available Content Database |
title | Electronic Excited States from Physically Constrained Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Excited%20States%20from%20Physically%20Constrained%20Machine%20Learning&rft.jtitle=ACS%20central%20science&rft.au=Cignoni,%20Edoardo&rft.date=2024-03-27&rft.volume=10&rft.issue=3&rft.spage=637&rft.epage=648&rft.pages=637-648&rft.issn=2374-7943&rft.eissn=2374-7951&rft_id=info:doi/10.1021/acscentsci.3c01480&rft_dat=%3Cproquest_doaj_%3E3031137112%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a403t-ce8d49a4610d3af6f6ace781c9e2cfd6029343e2b0a14b04ce6642acaa941ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3031137112&rft_id=info:pmid/38559300&rfr_iscdi=true |