Loading…
Spin pump and probe in lanthanum strontium manganite/platinum bilayers
Ferromagnetic resonance driven spin pumping (FMR-SP) is a novel method to transfer spin current from the ferromagnetic (FM) layer into the adjacent normal metal (NM) layer in an FM/NM bilayer system. Consequently, the spin current could be probed in NM layer via inverse spin Hall effect (ISHE). In s...
Saved in:
Published in: | Scientific reports 2017-07, Vol.7 (1), p.6612-9, Article 6612 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ferromagnetic resonance driven spin pumping (FMR-SP) is a novel method to transfer spin current from the ferromagnetic (FM) layer into the adjacent normal metal (NM) layer in an FM/NM bilayer system. Consequently, the spin current could be probed in NM layer via inverse spin Hall effect (ISHE). In spite of numerous ISHE studies on FM/Pt bilayers, La
0.7
Sr
0.3
MnO
3
(LSMO)/Pt system has been less explored and its relevant information about interface property (characterized by spin mixing conductance) and spin-charge conversion efficiency (characterized by spin Hall angle) is a matter of importance for the possible applications of spintronic devices. In this work, the technique of FMR-SP has been applied on two series of LSMO/Pt bilayers with the thickness of each layer being varied. The thickness dependences of ISHE voltage allow to extract the values of spin mixing conductance and spin Hall angle of LSMO/Pt bilayers, which are (1.8 ± 0.4) × 10
19
m
−2
and (1.2 ± 0.1) % respectively. In comparison with other FM/Pt systems, LSMO/Pt has comparable spin current density and spin mixing conductance, regardless its distinct electronic structure from other ferromagnetic metals. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-017-06861-1 |