Loading…

Topology-dependent self-structure mediation and efficient energy conversion in heat-flux-driven rotors of cholesteric droplets

When heat flux is applied to a chiral liquid crystal, unidirectional rotation is induced around the flux axis, as first discovered by Otto Lehmann in 1900. In recent years, this heat-flux-induced phenomenon has been studied mostly in droplets of cholesteric liquid crystals undergoing phase transitio...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2018-01, Vol.9 (1), p.432-11, Article 432
Main Authors: Yoshioka, Jun, Araoka, Fumito
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c606t-194473500cc2be6025a45f80844a0de2d38ad3613bd449029c59892f8b52be973
cites cdi_FETCH-LOGICAL-c606t-194473500cc2be6025a45f80844a0de2d38ad3613bd449029c59892f8b52be973
container_end_page 11
container_issue 1
container_start_page 432
container_title Nature communications
container_volume 9
creator Yoshioka, Jun
Araoka, Fumito
description When heat flux is applied to a chiral liquid crystal, unidirectional rotation is induced around the flux axis, as first discovered by Otto Lehmann in 1900. In recent years, this heat-flux-induced phenomenon has been studied mostly in droplets of cholesteric liquid crystals undergoing phase transition from the isotropic to cholesteric phase, i.e., in the coexistence region, which occurs over a very narrow temperature range. Here, we report that the heat-flux-induced rotation can be stabilised by the use of a dispersion system, in which the cholesteric droplets are dispersed in a viscous and poorly miscible isotropic solvent. Interestingly, the phenomenon is found to be topology dependent. Moreover, the rotation is not only stable but also more efficient than that in the known systems. We describe in detail how the dynamics of the heat-flux-induced rotation are altered in the present dispersion system. The Lehmann effect describes the spontaneous rotation of cholesteric liquid crystals in response to heat input. Here, the authors stabilise it by dispersing cholesteric droplets into a poorly miscible solvent and show dependences of rotation speed and conversion efficiency on the topological states.
doi_str_mv 10.1038/s41467-018-02910-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a57a2cd6322a4e07b3626f8496f5a15f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a57a2cd6322a4e07b3626f8496f5a15f</doaj_id><sourcerecordid>1992654468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-194473500cc2be6025a45f80844a0de2d38ad3613bd449029c59892f8b52be973</originalsourceid><addsrcrecordid>eNp1kk1rVDEUhi-i2DL2D7iQC27cRPN9k40gxY9CwU1dh0xyMpPhTjIm9w62C3-7mU4tU8FsEnKevDnn5e261wS_J5ipD5UTLgeEiUKYaoLR3bPunGJOEBkoe35yPusuat3gtpgmivOX3RnVTFHFyXn3-ybv8phXt8jDDpKHNPUVxoDqVGY3zQX6Lfhop5hTb5PvIYTo4gGDBGV127uc9lDqoR5TvwY7oTDOv5AvcQ-pL3nKpfY59G6dR6gTlOh6X_JuhKm-6l4EO1a4eNgX3Y8vn28uv6Hr71-vLj9dIyexnBDRnA9MYOwcXYLEVFgugsJtGos9UM-U9UwStvSc6-aHE1ppGtRSNF4PbNFdHXV9thuzK3Fry63JNpr7i1xWxpYpuhGMFYOlzktGqeWAhyWTVAbFtQzCEhGa1sej1m5eNm9c86LY8Yno00qKa7PKeyMGpRU5NPPuQaDkn3OzxGxjdTCONkGeqyFaM4yVaPMsurf_oJs8l9SsOlBUCs6lahQ9Uq7kWguEx2YINoe0mGNaTEuLuU-LuWuP3pyO8fjkbzYawI5AbaW0gnLy9_9l_wDC5c1j</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992654468</pqid></control><display><type>article</type><title>Topology-dependent self-structure mediation and efficient energy conversion in heat-flux-driven rotors of cholesteric droplets</title><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Yoshioka, Jun ; Araoka, Fumito</creator><creatorcontrib>Yoshioka, Jun ; Araoka, Fumito</creatorcontrib><description>When heat flux is applied to a chiral liquid crystal, unidirectional rotation is induced around the flux axis, as first discovered by Otto Lehmann in 1900. In recent years, this heat-flux-induced phenomenon has been studied mostly in droplets of cholesteric liquid crystals undergoing phase transition from the isotropic to cholesteric phase, i.e., in the coexistence region, which occurs over a very narrow temperature range. Here, we report that the heat-flux-induced rotation can be stabilised by the use of a dispersion system, in which the cholesteric droplets are dispersed in a viscous and poorly miscible isotropic solvent. Interestingly, the phenomenon is found to be topology dependent. Moreover, the rotation is not only stable but also more efficient than that in the known systems. We describe in detail how the dynamics of the heat-flux-induced rotation are altered in the present dispersion system. The Lehmann effect describes the spontaneous rotation of cholesteric liquid crystals in response to heat input. Here, the authors stabilise it by dispersing cholesteric droplets into a poorly miscible solvent and show dependences of rotation speed and conversion efficiency on the topological states.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-018-02910-z</identifier><identifier>PMID: 29382841</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301 ; 639/301/923/919 ; 639/766/189 ; Cholesteric liquid crystals ; Coexistence ; Crystals ; Dispersion ; Droplets ; Energy conversion ; Energy Transfer ; Fluctuations ; Heat ; Heat flux ; Hot Temperature ; Humanities and Social Sciences ; Liquid crystals ; Liquid Crystals - chemistry ; multidisciplinary ; Phase transitions ; Rotating liquids ; Rotation ; Rotors ; Science ; Science (multidisciplinary) ; Topology</subject><ispartof>Nature communications, 2018-01, Vol.9 (1), p.432-11, Article 432</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-194473500cc2be6025a45f80844a0de2d38ad3613bd449029c59892f8b52be973</citedby><cites>FETCH-LOGICAL-c606t-194473500cc2be6025a45f80844a0de2d38ad3613bd449029c59892f8b52be973</cites><orcidid>0000-0002-9387-6081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1992654468/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1992654468?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29382841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshioka, Jun</creatorcontrib><creatorcontrib>Araoka, Fumito</creatorcontrib><title>Topology-dependent self-structure mediation and efficient energy conversion in heat-flux-driven rotors of cholesteric droplets</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>When heat flux is applied to a chiral liquid crystal, unidirectional rotation is induced around the flux axis, as first discovered by Otto Lehmann in 1900. In recent years, this heat-flux-induced phenomenon has been studied mostly in droplets of cholesteric liquid crystals undergoing phase transition from the isotropic to cholesteric phase, i.e., in the coexistence region, which occurs over a very narrow temperature range. Here, we report that the heat-flux-induced rotation can be stabilised by the use of a dispersion system, in which the cholesteric droplets are dispersed in a viscous and poorly miscible isotropic solvent. Interestingly, the phenomenon is found to be topology dependent. Moreover, the rotation is not only stable but also more efficient than that in the known systems. We describe in detail how the dynamics of the heat-flux-induced rotation are altered in the present dispersion system. The Lehmann effect describes the spontaneous rotation of cholesteric liquid crystals in response to heat input. Here, the authors stabilise it by dispersing cholesteric droplets into a poorly miscible solvent and show dependences of rotation speed and conversion efficiency on the topological states.</description><subject>639/301</subject><subject>639/301/923/919</subject><subject>639/766/189</subject><subject>Cholesteric liquid crystals</subject><subject>Coexistence</subject><subject>Crystals</subject><subject>Dispersion</subject><subject>Droplets</subject><subject>Energy conversion</subject><subject>Energy Transfer</subject><subject>Fluctuations</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Hot Temperature</subject><subject>Humanities and Social Sciences</subject><subject>Liquid crystals</subject><subject>Liquid Crystals - chemistry</subject><subject>multidisciplinary</subject><subject>Phase transitions</subject><subject>Rotating liquids</subject><subject>Rotation</subject><subject>Rotors</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Topology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kk1rVDEUhi-i2DL2D7iQC27cRPN9k40gxY9CwU1dh0xyMpPhTjIm9w62C3-7mU4tU8FsEnKevDnn5e261wS_J5ipD5UTLgeEiUKYaoLR3bPunGJOEBkoe35yPusuat3gtpgmivOX3RnVTFHFyXn3-ybv8phXt8jDDpKHNPUVxoDqVGY3zQX6Lfhop5hTb5PvIYTo4gGDBGV127uc9lDqoR5TvwY7oTDOv5AvcQ-pL3nKpfY59G6dR6gTlOh6X_JuhKm-6l4EO1a4eNgX3Y8vn28uv6Hr71-vLj9dIyexnBDRnA9MYOwcXYLEVFgugsJtGos9UM-U9UwStvSc6-aHE1ppGtRSNF4PbNFdHXV9thuzK3Fry63JNpr7i1xWxpYpuhGMFYOlzktGqeWAhyWTVAbFtQzCEhGa1sej1m5eNm9c86LY8Yno00qKa7PKeyMGpRU5NPPuQaDkn3OzxGxjdTCONkGeqyFaM4yVaPMsurf_oJs8l9SsOlBUCs6lahQ9Uq7kWguEx2YINoe0mGNaTEuLuU-LuWuP3pyO8fjkbzYawI5AbaW0gnLy9_9l_wDC5c1j</recordid><startdate>20180130</startdate><enddate>20180130</enddate><creator>Yoshioka, Jun</creator><creator>Araoka, Fumito</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9387-6081</orcidid></search><sort><creationdate>20180130</creationdate><title>Topology-dependent self-structure mediation and efficient energy conversion in heat-flux-driven rotors of cholesteric droplets</title><author>Yoshioka, Jun ; Araoka, Fumito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-194473500cc2be6025a45f80844a0de2d38ad3613bd449029c59892f8b52be973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/301</topic><topic>639/301/923/919</topic><topic>639/766/189</topic><topic>Cholesteric liquid crystals</topic><topic>Coexistence</topic><topic>Crystals</topic><topic>Dispersion</topic><topic>Droplets</topic><topic>Energy conversion</topic><topic>Energy Transfer</topic><topic>Fluctuations</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Hot Temperature</topic><topic>Humanities and Social Sciences</topic><topic>Liquid crystals</topic><topic>Liquid Crystals - chemistry</topic><topic>multidisciplinary</topic><topic>Phase transitions</topic><topic>Rotating liquids</topic><topic>Rotation</topic><topic>Rotors</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshioka, Jun</creatorcontrib><creatorcontrib>Araoka, Fumito</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshioka, Jun</au><au>Araoka, Fumito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology-dependent self-structure mediation and efficient energy conversion in heat-flux-driven rotors of cholesteric droplets</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2018-01-30</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>432</spage><epage>11</epage><pages>432-11</pages><artnum>432</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>When heat flux is applied to a chiral liquid crystal, unidirectional rotation is induced around the flux axis, as first discovered by Otto Lehmann in 1900. In recent years, this heat-flux-induced phenomenon has been studied mostly in droplets of cholesteric liquid crystals undergoing phase transition from the isotropic to cholesteric phase, i.e., in the coexistence region, which occurs over a very narrow temperature range. Here, we report that the heat-flux-induced rotation can be stabilised by the use of a dispersion system, in which the cholesteric droplets are dispersed in a viscous and poorly miscible isotropic solvent. Interestingly, the phenomenon is found to be topology dependent. Moreover, the rotation is not only stable but also more efficient than that in the known systems. We describe in detail how the dynamics of the heat-flux-induced rotation are altered in the present dispersion system. The Lehmann effect describes the spontaneous rotation of cholesteric liquid crystals in response to heat input. Here, the authors stabilise it by dispersing cholesteric droplets into a poorly miscible solvent and show dependences of rotation speed and conversion efficiency on the topological states.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29382841</pmid><doi>10.1038/s41467-018-02910-z</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9387-6081</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2018-01, Vol.9 (1), p.432-11, Article 432
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a57a2cd6322a4e07b3626f8496f5a15f
source Nature; Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301
639/301/923/919
639/766/189
Cholesteric liquid crystals
Coexistence
Crystals
Dispersion
Droplets
Energy conversion
Energy Transfer
Fluctuations
Heat
Heat flux
Hot Temperature
Humanities and Social Sciences
Liquid crystals
Liquid Crystals - chemistry
multidisciplinary
Phase transitions
Rotating liquids
Rotation
Rotors
Science
Science (multidisciplinary)
Topology
title Topology-dependent self-structure mediation and efficient energy conversion in heat-flux-driven rotors of cholesteric droplets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology-dependent%20self-structure%20mediation%20and%20efficient%20energy%20conversion%20in%20heat-flux-driven%20rotors%20of%20cholesteric%20droplets&rft.jtitle=Nature%20communications&rft.au=Yoshioka,%20Jun&rft.date=2018-01-30&rft.volume=9&rft.issue=1&rft.spage=432&rft.epage=11&rft.pages=432-11&rft.artnum=432&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-018-02910-z&rft_dat=%3Cproquest_doaj_%3E1992654468%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-194473500cc2be6025a45f80844a0de2d38ad3613bd449029c59892f8b52be973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1992654468&rft_id=info:pmid/29382841&rfr_iscdi=true