Loading…

Characterization and prediction of clinical pathways of vulnerability to psychosis through graph signal processing

Causal interactions between specific psychiatric symptoms could contribute to the heterogenous clinical trajectories observed in early psychopathology. Current diagnostic approaches merge clinical manifestations that co-occur across subjects and could significantly hinder our understanding of clinic...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2021-09, Vol.10
Main Authors: Sandini, Corrado, Zöller, Daniela, Schneider, Maude, Tarun, Anjali, Armando, Marco, Nelson, Barnaby, Amminger, Paul G, Yuen, Hok Pan, Markulev, Connie, Schäffer, Monica R, Mossaheb, Nilufar, Schlögelhofer, Monika, Smesny, Stefan, Hickie, Ian B, Berger, Gregor Emanuel, Chen, Eric Yh, de Haan, Lieuwe, Nieman, Dorien H, Nordentoft, Merete, Riecher-Rössler, Anita, Verma, Swapna, Thompson, Andrew, Yung, Alison Ruth, McGorry, Patrick D, Van De Ville, Dimitri, Eliez, Stephan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4911-4b7f6f67efc2292c44ae7661bfbe69f65469ce62768844d701a1805be59df0913
cites cdi_FETCH-LOGICAL-c4911-4b7f6f67efc2292c44ae7661bfbe69f65469ce62768844d701a1805be59df0913
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 10
creator Sandini, Corrado
Zöller, Daniela
Schneider, Maude
Tarun, Anjali
Armando, Marco
Nelson, Barnaby
Amminger, Paul G
Yuen, Hok Pan
Markulev, Connie
Schäffer, Monica R
Mossaheb, Nilufar
Schlögelhofer, Monika
Smesny, Stefan
Hickie, Ian B
Berger, Gregor Emanuel
Chen, Eric Yh
de Haan, Lieuwe
Nieman, Dorien H
Nordentoft, Merete
Riecher-Rössler, Anita
Verma, Swapna
Thompson, Andrew
Yung, Alison Ruth
McGorry, Patrick D
Van De Ville, Dimitri
Eliez, Stephan
description Causal interactions between specific psychiatric symptoms could contribute to the heterogenous clinical trajectories observed in early psychopathology. Current diagnostic approaches merge clinical manifestations that co-occur across subjects and could significantly hinder our understanding of clinical pathways connecting individual symptoms. Network analysis techniques have emerged as alternative approaches that could help shed light on the complex dynamics of early psychopathology. The present study attempts to address the two main limitations that have in our opinion hindered the application of network approaches in the clinical setting. Firstly, we show that a multi-layer network analysis approach, can move beyond a static view of psychopathology, by providing an intuitive characterization of the role of specific symptoms in contributing to clinical trajectories over time. Secondly, we show that a Graph-Signal-Processing approach, can exploit knowledge of longitudinal interactions between symptoms, to predict clinical trajectories at the level of the individual. We test our approaches in two independent samples of individuals with genetic and clinical vulnerability for developing psychosis. Novel network approaches can allow to embrace the dynamic complexity of early psychopathology and help pave the way towards a more a personalized approach to clinical care.
doi_str_mv 10.7554/eLife.59811
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a5a6f78b8748495e9632964859498719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A676874078</galeid><doaj_id>oai_doaj_org_article_a5a6f78b8748495e9632964859498719</doaj_id><sourcerecordid>A676874078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4911-4b7f6f67efc2292c44ae7661bfbe69f65469ce62768844d701a1805be59df0913</originalsourceid><addsrcrecordid>eNptktuL1DAUxoso7rLuk-9S8MVFZmzaXF-EZfAyMCB4Ad9Cmp60GTpJTdrV8a83nVmXGTF5SHLyO1_Ix5dlz1GxZITgN7CxBpZEcIQeZZdlQYpFwfH3xyf7i-w6xm2RBsOcI_E0u6gwoUJU7DILq04FpUcI9rcarXe5ck0-BGisPhy9yXVvndWqzwc1dj_VPs7Fu6l3EFRtezvu89HnQ9zrzkcb87ELfmq7vA1q6PJoWzf3Bq8hRuvaZ9kTo_oI1_frVfbt_buvq4-LzacP69XtZqGxQGiBa2aooQyMLktRaowVMEpRbWqgwlCCqdBAS0Y5x7hhBVKIF6QGIhpTCFRdZeujbuPVVg7B7lTYS6-sPBR8aKUKo9U9SEUUNYzXPDmEBQFBq1JQzInAgjMkktbbo9Yw1TtoNLgxqP5M9PzG2U62_k5yzCgqZ4FX9wLB_5ggjnJno4a-Vw78FGVJGBWIYF4m9OU_6NZPIXk4U4KUJRbshGpV-oB1xqd39Swqb2nyhOGC8UQt_0Ol2cDOau_A2FQ_a7g5a0jMCL_GVk0xyvWXz-fs6yOrg48xgHnwAxVyTqc8pFMe0pnoF6cWPrB_s1j9AVgk32M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595224972</pqid></control><display><type>article</type><title>Characterization and prediction of clinical pathways of vulnerability to psychosis through graph signal processing</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Sandini, Corrado ; Zöller, Daniela ; Schneider, Maude ; Tarun, Anjali ; Armando, Marco ; Nelson, Barnaby ; Amminger, Paul G ; Yuen, Hok Pan ; Markulev, Connie ; Schäffer, Monica R ; Mossaheb, Nilufar ; Schlögelhofer, Monika ; Smesny, Stefan ; Hickie, Ian B ; Berger, Gregor Emanuel ; Chen, Eric Yh ; de Haan, Lieuwe ; Nieman, Dorien H ; Nordentoft, Merete ; Riecher-Rössler, Anita ; Verma, Swapna ; Thompson, Andrew ; Yung, Alison Ruth ; McGorry, Patrick D ; Van De Ville, Dimitri ; Eliez, Stephan</creator><creatorcontrib>Sandini, Corrado ; Zöller, Daniela ; Schneider, Maude ; Tarun, Anjali ; Armando, Marco ; Nelson, Barnaby ; Amminger, Paul G ; Yuen, Hok Pan ; Markulev, Connie ; Schäffer, Monica R ; Mossaheb, Nilufar ; Schlögelhofer, Monika ; Smesny, Stefan ; Hickie, Ian B ; Berger, Gregor Emanuel ; Chen, Eric Yh ; de Haan, Lieuwe ; Nieman, Dorien H ; Nordentoft, Merete ; Riecher-Rössler, Anita ; Verma, Swapna ; Thompson, Andrew ; Yung, Alison Ruth ; McGorry, Patrick D ; Van De Ville, Dimitri ; Eliez, Stephan</creatorcontrib><description>Causal interactions between specific psychiatric symptoms could contribute to the heterogenous clinical trajectories observed in early psychopathology. Current diagnostic approaches merge clinical manifestations that co-occur across subjects and could significantly hinder our understanding of clinical pathways connecting individual symptoms. Network analysis techniques have emerged as alternative approaches that could help shed light on the complex dynamics of early psychopathology. The present study attempts to address the two main limitations that have in our opinion hindered the application of network approaches in the clinical setting. Firstly, we show that a multi-layer network analysis approach, can move beyond a static view of psychopathology, by providing an intuitive characterization of the role of specific symptoms in contributing to clinical trajectories over time. Secondly, we show that a Graph-Signal-Processing approach, can exploit knowledge of longitudinal interactions between symptoms, to predict clinical trajectories at the level of the individual. We test our approaches in two independent samples of individuals with genetic and clinical vulnerability for developing psychosis. Novel network approaches can allow to embrace the dynamic complexity of early psychopathology and help pave the way towards a more a personalized approach to clinical care.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.59811</identifier><identifier>PMID: 34569937</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>22q11.2 deletion syndrome ; Adult ; affective pathway ; Clinical decision making ; Evidence-based medicine ; Female ; Humans ; Longitudinal Studies ; Male ; Medicine ; Mental disorders ; Mental health ; network analysis ; Personality ; Personality traits ; Precision Medicine ; Psychiatry ; Psychology, Pathological ; Psychopathology ; Psychosis ; Psychotic Disorders - physiopathology ; schizophrenia ; Signal processing ; Social interaction ; Variables</subject><ispartof>eLife, 2021-09, Vol.10</ispartof><rights>2021, Sandini et al.</rights><rights>COPYRIGHT 2021 eLife Science Publications, Ltd.</rights><rights>2021, Sandini et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021, Sandini et al 2021 Sandini et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4911-4b7f6f67efc2292c44ae7661bfbe69f65469ce62768844d701a1805be59df0913</citedby><cites>FETCH-LOGICAL-c4911-4b7f6f67efc2292c44ae7661bfbe69f65469ce62768844d701a1805be59df0913</cites><orcidid>0000-0003-2933-1607 ; 0000-0001-7147-8915 ; 0000-0002-7049-0696 ; 0000-0002-2879-3861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2595224972/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2595224972?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34569937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sandini, Corrado</creatorcontrib><creatorcontrib>Zöller, Daniela</creatorcontrib><creatorcontrib>Schneider, Maude</creatorcontrib><creatorcontrib>Tarun, Anjali</creatorcontrib><creatorcontrib>Armando, Marco</creatorcontrib><creatorcontrib>Nelson, Barnaby</creatorcontrib><creatorcontrib>Amminger, Paul G</creatorcontrib><creatorcontrib>Yuen, Hok Pan</creatorcontrib><creatorcontrib>Markulev, Connie</creatorcontrib><creatorcontrib>Schäffer, Monica R</creatorcontrib><creatorcontrib>Mossaheb, Nilufar</creatorcontrib><creatorcontrib>Schlögelhofer, Monika</creatorcontrib><creatorcontrib>Smesny, Stefan</creatorcontrib><creatorcontrib>Hickie, Ian B</creatorcontrib><creatorcontrib>Berger, Gregor Emanuel</creatorcontrib><creatorcontrib>Chen, Eric Yh</creatorcontrib><creatorcontrib>de Haan, Lieuwe</creatorcontrib><creatorcontrib>Nieman, Dorien H</creatorcontrib><creatorcontrib>Nordentoft, Merete</creatorcontrib><creatorcontrib>Riecher-Rössler, Anita</creatorcontrib><creatorcontrib>Verma, Swapna</creatorcontrib><creatorcontrib>Thompson, Andrew</creatorcontrib><creatorcontrib>Yung, Alison Ruth</creatorcontrib><creatorcontrib>McGorry, Patrick D</creatorcontrib><creatorcontrib>Van De Ville, Dimitri</creatorcontrib><creatorcontrib>Eliez, Stephan</creatorcontrib><title>Characterization and prediction of clinical pathways of vulnerability to psychosis through graph signal processing</title><title>eLife</title><addtitle>Elife</addtitle><description>Causal interactions between specific psychiatric symptoms could contribute to the heterogenous clinical trajectories observed in early psychopathology. Current diagnostic approaches merge clinical manifestations that co-occur across subjects and could significantly hinder our understanding of clinical pathways connecting individual symptoms. Network analysis techniques have emerged as alternative approaches that could help shed light on the complex dynamics of early psychopathology. The present study attempts to address the two main limitations that have in our opinion hindered the application of network approaches in the clinical setting. Firstly, we show that a multi-layer network analysis approach, can move beyond a static view of psychopathology, by providing an intuitive characterization of the role of specific symptoms in contributing to clinical trajectories over time. Secondly, we show that a Graph-Signal-Processing approach, can exploit knowledge of longitudinal interactions between symptoms, to predict clinical trajectories at the level of the individual. We test our approaches in two independent samples of individuals with genetic and clinical vulnerability for developing psychosis. Novel network approaches can allow to embrace the dynamic complexity of early psychopathology and help pave the way towards a more a personalized approach to clinical care.</description><subject>22q11.2 deletion syndrome</subject><subject>Adult</subject><subject>affective pathway</subject><subject>Clinical decision making</subject><subject>Evidence-based medicine</subject><subject>Female</subject><subject>Humans</subject><subject>Longitudinal Studies</subject><subject>Male</subject><subject>Medicine</subject><subject>Mental disorders</subject><subject>Mental health</subject><subject>network analysis</subject><subject>Personality</subject><subject>Personality traits</subject><subject>Precision Medicine</subject><subject>Psychiatry</subject><subject>Psychology, Pathological</subject><subject>Psychopathology</subject><subject>Psychosis</subject><subject>Psychotic Disorders - physiopathology</subject><subject>schizophrenia</subject><subject>Signal processing</subject><subject>Social interaction</subject><subject>Variables</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptktuL1DAUxoso7rLuk-9S8MVFZmzaXF-EZfAyMCB4Ad9Cmp60GTpJTdrV8a83nVmXGTF5SHLyO1_Ix5dlz1GxZITgN7CxBpZEcIQeZZdlQYpFwfH3xyf7i-w6xm2RBsOcI_E0u6gwoUJU7DILq04FpUcI9rcarXe5ck0-BGisPhy9yXVvndWqzwc1dj_VPs7Fu6l3EFRtezvu89HnQ9zrzkcb87ELfmq7vA1q6PJoWzf3Bq8hRuvaZ9kTo_oI1_frVfbt_buvq4-LzacP69XtZqGxQGiBa2aooQyMLktRaowVMEpRbWqgwlCCqdBAS0Y5x7hhBVKIF6QGIhpTCFRdZeujbuPVVg7B7lTYS6-sPBR8aKUKo9U9SEUUNYzXPDmEBQFBq1JQzInAgjMkktbbo9Yw1TtoNLgxqP5M9PzG2U62_k5yzCgqZ4FX9wLB_5ggjnJno4a-Vw78FGVJGBWIYF4m9OU_6NZPIXk4U4KUJRbshGpV-oB1xqd39Swqb2nyhOGC8UQt_0Ol2cDOau_A2FQ_a7g5a0jMCL_GVk0xyvWXz-fs6yOrg48xgHnwAxVyTqc8pFMe0pnoF6cWPrB_s1j9AVgk32M</recordid><startdate>20210927</startdate><enddate>20210927</enddate><creator>Sandini, Corrado</creator><creator>Zöller, Daniela</creator><creator>Schneider, Maude</creator><creator>Tarun, Anjali</creator><creator>Armando, Marco</creator><creator>Nelson, Barnaby</creator><creator>Amminger, Paul G</creator><creator>Yuen, Hok Pan</creator><creator>Markulev, Connie</creator><creator>Schäffer, Monica R</creator><creator>Mossaheb, Nilufar</creator><creator>Schlögelhofer, Monika</creator><creator>Smesny, Stefan</creator><creator>Hickie, Ian B</creator><creator>Berger, Gregor Emanuel</creator><creator>Chen, Eric Yh</creator><creator>de Haan, Lieuwe</creator><creator>Nieman, Dorien H</creator><creator>Nordentoft, Merete</creator><creator>Riecher-Rössler, Anita</creator><creator>Verma, Swapna</creator><creator>Thompson, Andrew</creator><creator>Yung, Alison Ruth</creator><creator>McGorry, Patrick D</creator><creator>Van De Ville, Dimitri</creator><creator>Eliez, Stephan</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2933-1607</orcidid><orcidid>https://orcid.org/0000-0001-7147-8915</orcidid><orcidid>https://orcid.org/0000-0002-7049-0696</orcidid><orcidid>https://orcid.org/0000-0002-2879-3861</orcidid></search><sort><creationdate>20210927</creationdate><title>Characterization and prediction of clinical pathways of vulnerability to psychosis through graph signal processing</title><author>Sandini, Corrado ; Zöller, Daniela ; Schneider, Maude ; Tarun, Anjali ; Armando, Marco ; Nelson, Barnaby ; Amminger, Paul G ; Yuen, Hok Pan ; Markulev, Connie ; Schäffer, Monica R ; Mossaheb, Nilufar ; Schlögelhofer, Monika ; Smesny, Stefan ; Hickie, Ian B ; Berger, Gregor Emanuel ; Chen, Eric Yh ; de Haan, Lieuwe ; Nieman, Dorien H ; Nordentoft, Merete ; Riecher-Rössler, Anita ; Verma, Swapna ; Thompson, Andrew ; Yung, Alison Ruth ; McGorry, Patrick D ; Van De Ville, Dimitri ; Eliez, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4911-4b7f6f67efc2292c44ae7661bfbe69f65469ce62768844d701a1805be59df0913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>22q11.2 deletion syndrome</topic><topic>Adult</topic><topic>affective pathway</topic><topic>Clinical decision making</topic><topic>Evidence-based medicine</topic><topic>Female</topic><topic>Humans</topic><topic>Longitudinal Studies</topic><topic>Male</topic><topic>Medicine</topic><topic>Mental disorders</topic><topic>Mental health</topic><topic>network analysis</topic><topic>Personality</topic><topic>Personality traits</topic><topic>Precision Medicine</topic><topic>Psychiatry</topic><topic>Psychology, Pathological</topic><topic>Psychopathology</topic><topic>Psychosis</topic><topic>Psychotic Disorders - physiopathology</topic><topic>schizophrenia</topic><topic>Signal processing</topic><topic>Social interaction</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandini, Corrado</creatorcontrib><creatorcontrib>Zöller, Daniela</creatorcontrib><creatorcontrib>Schneider, Maude</creatorcontrib><creatorcontrib>Tarun, Anjali</creatorcontrib><creatorcontrib>Armando, Marco</creatorcontrib><creatorcontrib>Nelson, Barnaby</creatorcontrib><creatorcontrib>Amminger, Paul G</creatorcontrib><creatorcontrib>Yuen, Hok Pan</creatorcontrib><creatorcontrib>Markulev, Connie</creatorcontrib><creatorcontrib>Schäffer, Monica R</creatorcontrib><creatorcontrib>Mossaheb, Nilufar</creatorcontrib><creatorcontrib>Schlögelhofer, Monika</creatorcontrib><creatorcontrib>Smesny, Stefan</creatorcontrib><creatorcontrib>Hickie, Ian B</creatorcontrib><creatorcontrib>Berger, Gregor Emanuel</creatorcontrib><creatorcontrib>Chen, Eric Yh</creatorcontrib><creatorcontrib>de Haan, Lieuwe</creatorcontrib><creatorcontrib>Nieman, Dorien H</creatorcontrib><creatorcontrib>Nordentoft, Merete</creatorcontrib><creatorcontrib>Riecher-Rössler, Anita</creatorcontrib><creatorcontrib>Verma, Swapna</creatorcontrib><creatorcontrib>Thompson, Andrew</creatorcontrib><creatorcontrib>Yung, Alison Ruth</creatorcontrib><creatorcontrib>McGorry, Patrick D</creatorcontrib><creatorcontrib>Van De Ville, Dimitri</creatorcontrib><creatorcontrib>Eliez, Stephan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (ProQuest Medical &amp; Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandini, Corrado</au><au>Zöller, Daniela</au><au>Schneider, Maude</au><au>Tarun, Anjali</au><au>Armando, Marco</au><au>Nelson, Barnaby</au><au>Amminger, Paul G</au><au>Yuen, Hok Pan</au><au>Markulev, Connie</au><au>Schäffer, Monica R</au><au>Mossaheb, Nilufar</au><au>Schlögelhofer, Monika</au><au>Smesny, Stefan</au><au>Hickie, Ian B</au><au>Berger, Gregor Emanuel</au><au>Chen, Eric Yh</au><au>de Haan, Lieuwe</au><au>Nieman, Dorien H</au><au>Nordentoft, Merete</au><au>Riecher-Rössler, Anita</au><au>Verma, Swapna</au><au>Thompson, Andrew</au><au>Yung, Alison Ruth</au><au>McGorry, Patrick D</au><au>Van De Ville, Dimitri</au><au>Eliez, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and prediction of clinical pathways of vulnerability to psychosis through graph signal processing</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2021-09-27</date><risdate>2021</risdate><volume>10</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Causal interactions between specific psychiatric symptoms could contribute to the heterogenous clinical trajectories observed in early psychopathology. Current diagnostic approaches merge clinical manifestations that co-occur across subjects and could significantly hinder our understanding of clinical pathways connecting individual symptoms. Network analysis techniques have emerged as alternative approaches that could help shed light on the complex dynamics of early psychopathology. The present study attempts to address the two main limitations that have in our opinion hindered the application of network approaches in the clinical setting. Firstly, we show that a multi-layer network analysis approach, can move beyond a static view of psychopathology, by providing an intuitive characterization of the role of specific symptoms in contributing to clinical trajectories over time. Secondly, we show that a Graph-Signal-Processing approach, can exploit knowledge of longitudinal interactions between symptoms, to predict clinical trajectories at the level of the individual. We test our approaches in two independent samples of individuals with genetic and clinical vulnerability for developing psychosis. Novel network approaches can allow to embrace the dynamic complexity of early psychopathology and help pave the way towards a more a personalized approach to clinical care.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>34569937</pmid><doi>10.7554/eLife.59811</doi><orcidid>https://orcid.org/0000-0003-2933-1607</orcidid><orcidid>https://orcid.org/0000-0001-7147-8915</orcidid><orcidid>https://orcid.org/0000-0002-7049-0696</orcidid><orcidid>https://orcid.org/0000-0002-2879-3861</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2021-09, Vol.10
issn 2050-084X
2050-084X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a5a6f78b8748495e9632964859498719
source Publicly Available Content Database; PubMed Central
subjects 22q11.2 deletion syndrome
Adult
affective pathway
Clinical decision making
Evidence-based medicine
Female
Humans
Longitudinal Studies
Male
Medicine
Mental disorders
Mental health
network analysis
Personality
Personality traits
Precision Medicine
Psychiatry
Psychology, Pathological
Psychopathology
Psychosis
Psychotic Disorders - physiopathology
schizophrenia
Signal processing
Social interaction
Variables
title Characterization and prediction of clinical pathways of vulnerability to psychosis through graph signal processing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20prediction%20of%20clinical%20pathways%20of%20vulnerability%20to%20psychosis%20through%20graph%20signal%20processing&rft.jtitle=eLife&rft.au=Sandini,%20Corrado&rft.date=2021-09-27&rft.volume=10&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.59811&rft_dat=%3Cgale_doaj_%3EA676874078%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4911-4b7f6f67efc2292c44ae7661bfbe69f65469ce62768844d701a1805be59df0913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2595224972&rft_id=info:pmid/34569937&rft_galeid=A676874078&rfr_iscdi=true