Loading…
Characterization and prediction of clinical pathways of vulnerability to psychosis through graph signal processing
Causal interactions between specific psychiatric symptoms could contribute to the heterogenous clinical trajectories observed in early psychopathology. Current diagnostic approaches merge clinical manifestations that co-occur across subjects and could significantly hinder our understanding of clinic...
Saved in:
Published in: | eLife 2021-09, Vol.10 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4911-4b7f6f67efc2292c44ae7661bfbe69f65469ce62768844d701a1805be59df0913 |
---|---|
cites | cdi_FETCH-LOGICAL-c4911-4b7f6f67efc2292c44ae7661bfbe69f65469ce62768844d701a1805be59df0913 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | eLife |
container_volume | 10 |
creator | Sandini, Corrado Zöller, Daniela Schneider, Maude Tarun, Anjali Armando, Marco Nelson, Barnaby Amminger, Paul G Yuen, Hok Pan Markulev, Connie Schäffer, Monica R Mossaheb, Nilufar Schlögelhofer, Monika Smesny, Stefan Hickie, Ian B Berger, Gregor Emanuel Chen, Eric Yh de Haan, Lieuwe Nieman, Dorien H Nordentoft, Merete Riecher-Rössler, Anita Verma, Swapna Thompson, Andrew Yung, Alison Ruth McGorry, Patrick D Van De Ville, Dimitri Eliez, Stephan |
description | Causal interactions between specific psychiatric symptoms could contribute to the heterogenous clinical trajectories observed in early psychopathology. Current diagnostic approaches merge clinical manifestations that co-occur across subjects and could significantly hinder our understanding of clinical pathways connecting individual symptoms. Network analysis techniques have emerged as alternative approaches that could help shed light on the complex dynamics of early psychopathology. The present study attempts to address the two main limitations that have in our opinion hindered the application of network approaches in the clinical setting. Firstly, we show that a multi-layer network analysis approach, can move beyond a static view of psychopathology, by providing an intuitive characterization of the role of specific symptoms in contributing to clinical trajectories over time. Secondly, we show that a Graph-Signal-Processing approach, can exploit knowledge of longitudinal interactions between symptoms, to predict clinical trajectories at the level of the individual. We test our approaches in two independent samples of individuals with genetic and clinical vulnerability for developing psychosis. Novel network approaches can allow to embrace the dynamic complexity of early psychopathology and help pave the way towards a more a personalized approach to clinical care. |
doi_str_mv | 10.7554/eLife.59811 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a5a6f78b8748495e9632964859498719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A676874078</galeid><doaj_id>oai_doaj_org_article_a5a6f78b8748495e9632964859498719</doaj_id><sourcerecordid>A676874078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4911-4b7f6f67efc2292c44ae7661bfbe69f65469ce62768844d701a1805be59df0913</originalsourceid><addsrcrecordid>eNptktuL1DAUxoso7rLuk-9S8MVFZmzaXF-EZfAyMCB4Ad9Cmp60GTpJTdrV8a83nVmXGTF5SHLyO1_Ix5dlz1GxZITgN7CxBpZEcIQeZZdlQYpFwfH3xyf7i-w6xm2RBsOcI_E0u6gwoUJU7DILq04FpUcI9rcarXe5ck0-BGisPhy9yXVvndWqzwc1dj_VPs7Fu6l3EFRtezvu89HnQ9zrzkcb87ELfmq7vA1q6PJoWzf3Bq8hRuvaZ9kTo_oI1_frVfbt_buvq4-LzacP69XtZqGxQGiBa2aooQyMLktRaowVMEpRbWqgwlCCqdBAS0Y5x7hhBVKIF6QGIhpTCFRdZeujbuPVVg7B7lTYS6-sPBR8aKUKo9U9SEUUNYzXPDmEBQFBq1JQzInAgjMkktbbo9Yw1TtoNLgxqP5M9PzG2U62_k5yzCgqZ4FX9wLB_5ggjnJno4a-Vw78FGVJGBWIYF4m9OU_6NZPIXk4U4KUJRbshGpV-oB1xqd39Swqb2nyhOGC8UQt_0Ol2cDOau_A2FQ_a7g5a0jMCL_GVk0xyvWXz-fs6yOrg48xgHnwAxVyTqc8pFMe0pnoF6cWPrB_s1j9AVgk32M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595224972</pqid></control><display><type>article</type><title>Characterization and prediction of clinical pathways of vulnerability to psychosis through graph signal processing</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Sandini, Corrado ; Zöller, Daniela ; Schneider, Maude ; Tarun, Anjali ; Armando, Marco ; Nelson, Barnaby ; Amminger, Paul G ; Yuen, Hok Pan ; Markulev, Connie ; Schäffer, Monica R ; Mossaheb, Nilufar ; Schlögelhofer, Monika ; Smesny, Stefan ; Hickie, Ian B ; Berger, Gregor Emanuel ; Chen, Eric Yh ; de Haan, Lieuwe ; Nieman, Dorien H ; Nordentoft, Merete ; Riecher-Rössler, Anita ; Verma, Swapna ; Thompson, Andrew ; Yung, Alison Ruth ; McGorry, Patrick D ; Van De Ville, Dimitri ; Eliez, Stephan</creator><creatorcontrib>Sandini, Corrado ; Zöller, Daniela ; Schneider, Maude ; Tarun, Anjali ; Armando, Marco ; Nelson, Barnaby ; Amminger, Paul G ; Yuen, Hok Pan ; Markulev, Connie ; Schäffer, Monica R ; Mossaheb, Nilufar ; Schlögelhofer, Monika ; Smesny, Stefan ; Hickie, Ian B ; Berger, Gregor Emanuel ; Chen, Eric Yh ; de Haan, Lieuwe ; Nieman, Dorien H ; Nordentoft, Merete ; Riecher-Rössler, Anita ; Verma, Swapna ; Thompson, Andrew ; Yung, Alison Ruth ; McGorry, Patrick D ; Van De Ville, Dimitri ; Eliez, Stephan</creatorcontrib><description>Causal interactions between specific psychiatric symptoms could contribute to the heterogenous clinical trajectories observed in early psychopathology. Current diagnostic approaches merge clinical manifestations that co-occur across subjects and could significantly hinder our understanding of clinical pathways connecting individual symptoms. Network analysis techniques have emerged as alternative approaches that could help shed light on the complex dynamics of early psychopathology. The present study attempts to address the two main limitations that have in our opinion hindered the application of network approaches in the clinical setting. Firstly, we show that a multi-layer network analysis approach, can move beyond a static view of psychopathology, by providing an intuitive characterization of the role of specific symptoms in contributing to clinical trajectories over time. Secondly, we show that a Graph-Signal-Processing approach, can exploit knowledge of longitudinal interactions between symptoms, to predict clinical trajectories at the level of the individual. We test our approaches in two independent samples of individuals with genetic and clinical vulnerability for developing psychosis. Novel network approaches can allow to embrace the dynamic complexity of early psychopathology and help pave the way towards a more a personalized approach to clinical care.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.59811</identifier><identifier>PMID: 34569937</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>22q11.2 deletion syndrome ; Adult ; affective pathway ; Clinical decision making ; Evidence-based medicine ; Female ; Humans ; Longitudinal Studies ; Male ; Medicine ; Mental disorders ; Mental health ; network analysis ; Personality ; Personality traits ; Precision Medicine ; Psychiatry ; Psychology, Pathological ; Psychopathology ; Psychosis ; Psychotic Disorders - physiopathology ; schizophrenia ; Signal processing ; Social interaction ; Variables</subject><ispartof>eLife, 2021-09, Vol.10</ispartof><rights>2021, Sandini et al.</rights><rights>COPYRIGHT 2021 eLife Science Publications, Ltd.</rights><rights>2021, Sandini et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021, Sandini et al 2021 Sandini et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4911-4b7f6f67efc2292c44ae7661bfbe69f65469ce62768844d701a1805be59df0913</citedby><cites>FETCH-LOGICAL-c4911-4b7f6f67efc2292c44ae7661bfbe69f65469ce62768844d701a1805be59df0913</cites><orcidid>0000-0003-2933-1607 ; 0000-0001-7147-8915 ; 0000-0002-7049-0696 ; 0000-0002-2879-3861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2595224972/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2595224972?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34569937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sandini, Corrado</creatorcontrib><creatorcontrib>Zöller, Daniela</creatorcontrib><creatorcontrib>Schneider, Maude</creatorcontrib><creatorcontrib>Tarun, Anjali</creatorcontrib><creatorcontrib>Armando, Marco</creatorcontrib><creatorcontrib>Nelson, Barnaby</creatorcontrib><creatorcontrib>Amminger, Paul G</creatorcontrib><creatorcontrib>Yuen, Hok Pan</creatorcontrib><creatorcontrib>Markulev, Connie</creatorcontrib><creatorcontrib>Schäffer, Monica R</creatorcontrib><creatorcontrib>Mossaheb, Nilufar</creatorcontrib><creatorcontrib>Schlögelhofer, Monika</creatorcontrib><creatorcontrib>Smesny, Stefan</creatorcontrib><creatorcontrib>Hickie, Ian B</creatorcontrib><creatorcontrib>Berger, Gregor Emanuel</creatorcontrib><creatorcontrib>Chen, Eric Yh</creatorcontrib><creatorcontrib>de Haan, Lieuwe</creatorcontrib><creatorcontrib>Nieman, Dorien H</creatorcontrib><creatorcontrib>Nordentoft, Merete</creatorcontrib><creatorcontrib>Riecher-Rössler, Anita</creatorcontrib><creatorcontrib>Verma, Swapna</creatorcontrib><creatorcontrib>Thompson, Andrew</creatorcontrib><creatorcontrib>Yung, Alison Ruth</creatorcontrib><creatorcontrib>McGorry, Patrick D</creatorcontrib><creatorcontrib>Van De Ville, Dimitri</creatorcontrib><creatorcontrib>Eliez, Stephan</creatorcontrib><title>Characterization and prediction of clinical pathways of vulnerability to psychosis through graph signal processing</title><title>eLife</title><addtitle>Elife</addtitle><description>Causal interactions between specific psychiatric symptoms could contribute to the heterogenous clinical trajectories observed in early psychopathology. Current diagnostic approaches merge clinical manifestations that co-occur across subjects and could significantly hinder our understanding of clinical pathways connecting individual symptoms. Network analysis techniques have emerged as alternative approaches that could help shed light on the complex dynamics of early psychopathology. The present study attempts to address the two main limitations that have in our opinion hindered the application of network approaches in the clinical setting. Firstly, we show that a multi-layer network analysis approach, can move beyond a static view of psychopathology, by providing an intuitive characterization of the role of specific symptoms in contributing to clinical trajectories over time. Secondly, we show that a Graph-Signal-Processing approach, can exploit knowledge of longitudinal interactions between symptoms, to predict clinical trajectories at the level of the individual. We test our approaches in two independent samples of individuals with genetic and clinical vulnerability for developing psychosis. Novel network approaches can allow to embrace the dynamic complexity of early psychopathology and help pave the way towards a more a personalized approach to clinical care.</description><subject>22q11.2 deletion syndrome</subject><subject>Adult</subject><subject>affective pathway</subject><subject>Clinical decision making</subject><subject>Evidence-based medicine</subject><subject>Female</subject><subject>Humans</subject><subject>Longitudinal Studies</subject><subject>Male</subject><subject>Medicine</subject><subject>Mental disorders</subject><subject>Mental health</subject><subject>network analysis</subject><subject>Personality</subject><subject>Personality traits</subject><subject>Precision Medicine</subject><subject>Psychiatry</subject><subject>Psychology, Pathological</subject><subject>Psychopathology</subject><subject>Psychosis</subject><subject>Psychotic Disorders - physiopathology</subject><subject>schizophrenia</subject><subject>Signal processing</subject><subject>Social interaction</subject><subject>Variables</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptktuL1DAUxoso7rLuk-9S8MVFZmzaXF-EZfAyMCB4Ad9Cmp60GTpJTdrV8a83nVmXGTF5SHLyO1_Ix5dlz1GxZITgN7CxBpZEcIQeZZdlQYpFwfH3xyf7i-w6xm2RBsOcI_E0u6gwoUJU7DILq04FpUcI9rcarXe5ck0-BGisPhy9yXVvndWqzwc1dj_VPs7Fu6l3EFRtezvu89HnQ9zrzkcb87ELfmq7vA1q6PJoWzf3Bq8hRuvaZ9kTo_oI1_frVfbt_buvq4-LzacP69XtZqGxQGiBa2aooQyMLktRaowVMEpRbWqgwlCCqdBAS0Y5x7hhBVKIF6QGIhpTCFRdZeujbuPVVg7B7lTYS6-sPBR8aKUKo9U9SEUUNYzXPDmEBQFBq1JQzInAgjMkktbbo9Yw1TtoNLgxqP5M9PzG2U62_k5yzCgqZ4FX9wLB_5ggjnJno4a-Vw78FGVJGBWIYF4m9OU_6NZPIXk4U4KUJRbshGpV-oB1xqd39Swqb2nyhOGC8UQt_0Ol2cDOau_A2FQ_a7g5a0jMCL_GVk0xyvWXz-fs6yOrg48xgHnwAxVyTqc8pFMe0pnoF6cWPrB_s1j9AVgk32M</recordid><startdate>20210927</startdate><enddate>20210927</enddate><creator>Sandini, Corrado</creator><creator>Zöller, Daniela</creator><creator>Schneider, Maude</creator><creator>Tarun, Anjali</creator><creator>Armando, Marco</creator><creator>Nelson, Barnaby</creator><creator>Amminger, Paul G</creator><creator>Yuen, Hok Pan</creator><creator>Markulev, Connie</creator><creator>Schäffer, Monica R</creator><creator>Mossaheb, Nilufar</creator><creator>Schlögelhofer, Monika</creator><creator>Smesny, Stefan</creator><creator>Hickie, Ian B</creator><creator>Berger, Gregor Emanuel</creator><creator>Chen, Eric Yh</creator><creator>de Haan, Lieuwe</creator><creator>Nieman, Dorien H</creator><creator>Nordentoft, Merete</creator><creator>Riecher-Rössler, Anita</creator><creator>Verma, Swapna</creator><creator>Thompson, Andrew</creator><creator>Yung, Alison Ruth</creator><creator>McGorry, Patrick D</creator><creator>Van De Ville, Dimitri</creator><creator>Eliez, Stephan</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2933-1607</orcidid><orcidid>https://orcid.org/0000-0001-7147-8915</orcidid><orcidid>https://orcid.org/0000-0002-7049-0696</orcidid><orcidid>https://orcid.org/0000-0002-2879-3861</orcidid></search><sort><creationdate>20210927</creationdate><title>Characterization and prediction of clinical pathways of vulnerability to psychosis through graph signal processing</title><author>Sandini, Corrado ; Zöller, Daniela ; Schneider, Maude ; Tarun, Anjali ; Armando, Marco ; Nelson, Barnaby ; Amminger, Paul G ; Yuen, Hok Pan ; Markulev, Connie ; Schäffer, Monica R ; Mossaheb, Nilufar ; Schlögelhofer, Monika ; Smesny, Stefan ; Hickie, Ian B ; Berger, Gregor Emanuel ; Chen, Eric Yh ; de Haan, Lieuwe ; Nieman, Dorien H ; Nordentoft, Merete ; Riecher-Rössler, Anita ; Verma, Swapna ; Thompson, Andrew ; Yung, Alison Ruth ; McGorry, Patrick D ; Van De Ville, Dimitri ; Eliez, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4911-4b7f6f67efc2292c44ae7661bfbe69f65469ce62768844d701a1805be59df0913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>22q11.2 deletion syndrome</topic><topic>Adult</topic><topic>affective pathway</topic><topic>Clinical decision making</topic><topic>Evidence-based medicine</topic><topic>Female</topic><topic>Humans</topic><topic>Longitudinal Studies</topic><topic>Male</topic><topic>Medicine</topic><topic>Mental disorders</topic><topic>Mental health</topic><topic>network analysis</topic><topic>Personality</topic><topic>Personality traits</topic><topic>Precision Medicine</topic><topic>Psychiatry</topic><topic>Psychology, Pathological</topic><topic>Psychopathology</topic><topic>Psychosis</topic><topic>Psychotic Disorders - physiopathology</topic><topic>schizophrenia</topic><topic>Signal processing</topic><topic>Social interaction</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandini, Corrado</creatorcontrib><creatorcontrib>Zöller, Daniela</creatorcontrib><creatorcontrib>Schneider, Maude</creatorcontrib><creatorcontrib>Tarun, Anjali</creatorcontrib><creatorcontrib>Armando, Marco</creatorcontrib><creatorcontrib>Nelson, Barnaby</creatorcontrib><creatorcontrib>Amminger, Paul G</creatorcontrib><creatorcontrib>Yuen, Hok Pan</creatorcontrib><creatorcontrib>Markulev, Connie</creatorcontrib><creatorcontrib>Schäffer, Monica R</creatorcontrib><creatorcontrib>Mossaheb, Nilufar</creatorcontrib><creatorcontrib>Schlögelhofer, Monika</creatorcontrib><creatorcontrib>Smesny, Stefan</creatorcontrib><creatorcontrib>Hickie, Ian B</creatorcontrib><creatorcontrib>Berger, Gregor Emanuel</creatorcontrib><creatorcontrib>Chen, Eric Yh</creatorcontrib><creatorcontrib>de Haan, Lieuwe</creatorcontrib><creatorcontrib>Nieman, Dorien H</creatorcontrib><creatorcontrib>Nordentoft, Merete</creatorcontrib><creatorcontrib>Riecher-Rössler, Anita</creatorcontrib><creatorcontrib>Verma, Swapna</creatorcontrib><creatorcontrib>Thompson, Andrew</creatorcontrib><creatorcontrib>Yung, Alison Ruth</creatorcontrib><creatorcontrib>McGorry, Patrick D</creatorcontrib><creatorcontrib>Van De Ville, Dimitri</creatorcontrib><creatorcontrib>Eliez, Stephan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (ProQuest Medical & Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandini, Corrado</au><au>Zöller, Daniela</au><au>Schneider, Maude</au><au>Tarun, Anjali</au><au>Armando, Marco</au><au>Nelson, Barnaby</au><au>Amminger, Paul G</au><au>Yuen, Hok Pan</au><au>Markulev, Connie</au><au>Schäffer, Monica R</au><au>Mossaheb, Nilufar</au><au>Schlögelhofer, Monika</au><au>Smesny, Stefan</au><au>Hickie, Ian B</au><au>Berger, Gregor Emanuel</au><au>Chen, Eric Yh</au><au>de Haan, Lieuwe</au><au>Nieman, Dorien H</au><au>Nordentoft, Merete</au><au>Riecher-Rössler, Anita</au><au>Verma, Swapna</au><au>Thompson, Andrew</au><au>Yung, Alison Ruth</au><au>McGorry, Patrick D</au><au>Van De Ville, Dimitri</au><au>Eliez, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and prediction of clinical pathways of vulnerability to psychosis through graph signal processing</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2021-09-27</date><risdate>2021</risdate><volume>10</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Causal interactions between specific psychiatric symptoms could contribute to the heterogenous clinical trajectories observed in early psychopathology. Current diagnostic approaches merge clinical manifestations that co-occur across subjects and could significantly hinder our understanding of clinical pathways connecting individual symptoms. Network analysis techniques have emerged as alternative approaches that could help shed light on the complex dynamics of early psychopathology. The present study attempts to address the two main limitations that have in our opinion hindered the application of network approaches in the clinical setting. Firstly, we show that a multi-layer network analysis approach, can move beyond a static view of psychopathology, by providing an intuitive characterization of the role of specific symptoms in contributing to clinical trajectories over time. Secondly, we show that a Graph-Signal-Processing approach, can exploit knowledge of longitudinal interactions between symptoms, to predict clinical trajectories at the level of the individual. We test our approaches in two independent samples of individuals with genetic and clinical vulnerability for developing psychosis. Novel network approaches can allow to embrace the dynamic complexity of early psychopathology and help pave the way towards a more a personalized approach to clinical care.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>34569937</pmid><doi>10.7554/eLife.59811</doi><orcidid>https://orcid.org/0000-0003-2933-1607</orcidid><orcidid>https://orcid.org/0000-0001-7147-8915</orcidid><orcidid>https://orcid.org/0000-0002-7049-0696</orcidid><orcidid>https://orcid.org/0000-0002-2879-3861</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-084X |
ispartof | eLife, 2021-09, Vol.10 |
issn | 2050-084X 2050-084X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a5a6f78b8748495e9632964859498719 |
source | Publicly Available Content Database; PubMed Central |
subjects | 22q11.2 deletion syndrome Adult affective pathway Clinical decision making Evidence-based medicine Female Humans Longitudinal Studies Male Medicine Mental disorders Mental health network analysis Personality Personality traits Precision Medicine Psychiatry Psychology, Pathological Psychopathology Psychosis Psychotic Disorders - physiopathology schizophrenia Signal processing Social interaction Variables |
title | Characterization and prediction of clinical pathways of vulnerability to psychosis through graph signal processing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20prediction%20of%20clinical%20pathways%20of%20vulnerability%20to%20psychosis%20through%20graph%20signal%20processing&rft.jtitle=eLife&rft.au=Sandini,%20Corrado&rft.date=2021-09-27&rft.volume=10&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.59811&rft_dat=%3Cgale_doaj_%3EA676874078%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4911-4b7f6f67efc2292c44ae7661bfbe69f65469ce62768844d701a1805be59df0913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2595224972&rft_id=info:pmid/34569937&rft_galeid=A676874078&rfr_iscdi=true |