Loading…

Prediction of tropospheric wet delay by an artificial neural network model based on meteorological and GNSS data

Estimation of tropospheric wet delay is of great importance for real-time weather forecasting applications. In the last decade, based on troposphere wet delays obtained from Global Navigation Satellite System observations, high temporal and spatial resolution water vapor data can be produced for rel...

Full description

Saved in:
Bibliographic Details
Published in:Engineering science and technology, an international journal an international journal, 2020-10, Vol.23 (5), p.967-972
Main Author: Selbesoglu, Mahmut Oguz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-21766a073081db4705c3924a057105eb08d0f16de330c8c03d75679bfb3ff5b03
cites cdi_FETCH-LOGICAL-c418t-21766a073081db4705c3924a057105eb08d0f16de330c8c03d75679bfb3ff5b03
container_end_page 972
container_issue 5
container_start_page 967
container_title Engineering science and technology, an international journal
container_volume 23
creator Selbesoglu, Mahmut Oguz
description Estimation of tropospheric wet delay is of great importance for real-time weather forecasting applications. In the last decade, based on troposphere wet delays obtained from Global Navigation Satellite System observations, high temporal and spatial resolution water vapor data can be produced for reliable and accurate weather forecasting. The main objective of this study is to investigate the accuracy of tropospheric wet delay prediction based on artificial neural network technology by the integration of Global Navigation Satellite System and meteorological data from in-situ observations of The New Austrian Meteorological Measuring Network. In the study, artificial neural network model was used to predict the wet troposphere delay up to six hour. Predicted zenith wet delay values were compared with the values estimated from Global Navigation Satellite System observations for validation. The predictions were carried out during humid (August) and dry (December) periods on two reference stations belonging to Echtzeit Positionierung Austria GNSS Network of Austria. The root mean square error of zenith wet delay prediction based on newly designed artificial neural network Model was found 1.5 cm for up to six hours.
doi_str_mv 10.1016/j.jestch.2019.11.006
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a5bda0d23ec14f9f8024b27e46e5d303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2215098619316003</els_id><doaj_id>oai_doaj_org_article_a5bda0d23ec14f9f8024b27e46e5d303</doaj_id><sourcerecordid>S2215098619316003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-21766a073081db4705c3924a057105eb08d0f16de330c8c03d75679bfb3ff5b03</originalsourceid><addsrcrecordid>eNp9kcFq3DAQhk1poSHJG_SgF1h3RrJk-xIooU0DISmkPQtZGiVyvNYiqQ379tFmS8mppxmGfz7mn79pPiG0CKg-z-1MudjHlgOOLWILoN41J5yj3MA4qPdv-o_Nec4zQFVyRKlOmt2PRC7YEuLKomclxV3Mu0dKwbJnKszRYvZs2jOzMpNK8MEGs7CVfqfXUp5jemLbWHVsMpkcq6AtFYopLvEh2Koyq2NXt_f3zJlizpoP3iyZzv_W0-bXt68_L79vbu6uri-_3Gxsh0PZcOyVMtALGNBNXQ_SipF3BmSPIGmCwYFH5UgIsIMF4Xqp-nHyk_BeTiBOm-sj10Uz610KW5P2OpqgXwcxPeiDH7uQNnJyBhwXZLHzox-AdxPvqVMknQBRWd2RZVPMOZH_x0PQhxD0rI8h6EMIGlHXEOraxXGNqs8_gZLONtBq68MT2VIPCf8HvAA_C5JL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of tropospheric wet delay by an artificial neural network model based on meteorological and GNSS data</title><source>ScienceDirect®</source><creator>Selbesoglu, Mahmut Oguz</creator><creatorcontrib>Selbesoglu, Mahmut Oguz</creatorcontrib><description>Estimation of tropospheric wet delay is of great importance for real-time weather forecasting applications. In the last decade, based on troposphere wet delays obtained from Global Navigation Satellite System observations, high temporal and spatial resolution water vapor data can be produced for reliable and accurate weather forecasting. The main objective of this study is to investigate the accuracy of tropospheric wet delay prediction based on artificial neural network technology by the integration of Global Navigation Satellite System and meteorological data from in-situ observations of The New Austrian Meteorological Measuring Network. In the study, artificial neural network model was used to predict the wet troposphere delay up to six hour. Predicted zenith wet delay values were compared with the values estimated from Global Navigation Satellite System observations for validation. The predictions were carried out during humid (August) and dry (December) periods on two reference stations belonging to Echtzeit Positionierung Austria GNSS Network of Austria. The root mean square error of zenith wet delay prediction based on newly designed artificial neural network Model was found 1.5 cm for up to six hours.</description><identifier>ISSN: 2215-0986</identifier><identifier>EISSN: 2215-0986</identifier><identifier>DOI: 10.1016/j.jestch.2019.11.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Artificial neural network ; Climate ; GNSS meteorology ; Troposphere wet delay ; Weather forecast</subject><ispartof>Engineering science and technology, an international journal, 2020-10, Vol.23 (5), p.967-972</ispartof><rights>2019 Karabuk University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-21766a073081db4705c3924a057105eb08d0f16de330c8c03d75679bfb3ff5b03</citedby><cites>FETCH-LOGICAL-c418t-21766a073081db4705c3924a057105eb08d0f16de330c8c03d75679bfb3ff5b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2215098619316003$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids></links><search><creatorcontrib>Selbesoglu, Mahmut Oguz</creatorcontrib><title>Prediction of tropospheric wet delay by an artificial neural network model based on meteorological and GNSS data</title><title>Engineering science and technology, an international journal</title><description>Estimation of tropospheric wet delay is of great importance for real-time weather forecasting applications. In the last decade, based on troposphere wet delays obtained from Global Navigation Satellite System observations, high temporal and spatial resolution water vapor data can be produced for reliable and accurate weather forecasting. The main objective of this study is to investigate the accuracy of tropospheric wet delay prediction based on artificial neural network technology by the integration of Global Navigation Satellite System and meteorological data from in-situ observations of The New Austrian Meteorological Measuring Network. In the study, artificial neural network model was used to predict the wet troposphere delay up to six hour. Predicted zenith wet delay values were compared with the values estimated from Global Navigation Satellite System observations for validation. The predictions were carried out during humid (August) and dry (December) periods on two reference stations belonging to Echtzeit Positionierung Austria GNSS Network of Austria. The root mean square error of zenith wet delay prediction based on newly designed artificial neural network Model was found 1.5 cm for up to six hours.</description><subject>Artificial neural network</subject><subject>Climate</subject><subject>GNSS meteorology</subject><subject>Troposphere wet delay</subject><subject>Weather forecast</subject><issn>2215-0986</issn><issn>2215-0986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kcFq3DAQhk1poSHJG_SgF1h3RrJk-xIooU0DISmkPQtZGiVyvNYiqQ379tFmS8mppxmGfz7mn79pPiG0CKg-z-1MudjHlgOOLWILoN41J5yj3MA4qPdv-o_Nec4zQFVyRKlOmt2PRC7YEuLKomclxV3Mu0dKwbJnKszRYvZs2jOzMpNK8MEGs7CVfqfXUp5jemLbWHVsMpkcq6AtFYopLvEh2Koyq2NXt_f3zJlizpoP3iyZzv_W0-bXt68_L79vbu6uri-_3Gxsh0PZcOyVMtALGNBNXQ_SipF3BmSPIGmCwYFH5UgIsIMF4Xqp-nHyk_BeTiBOm-sj10Uz610KW5P2OpqgXwcxPeiDH7uQNnJyBhwXZLHzox-AdxPvqVMknQBRWd2RZVPMOZH_x0PQhxD0rI8h6EMIGlHXEOraxXGNqs8_gZLONtBq68MT2VIPCf8HvAA_C5JL</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Selbesoglu, Mahmut Oguz</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202010</creationdate><title>Prediction of tropospheric wet delay by an artificial neural network model based on meteorological and GNSS data</title><author>Selbesoglu, Mahmut Oguz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-21766a073081db4705c3924a057105eb08d0f16de330c8c03d75679bfb3ff5b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural network</topic><topic>Climate</topic><topic>GNSS meteorology</topic><topic>Troposphere wet delay</topic><topic>Weather forecast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selbesoglu, Mahmut Oguz</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Engineering science and technology, an international journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selbesoglu, Mahmut Oguz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of tropospheric wet delay by an artificial neural network model based on meteorological and GNSS data</atitle><jtitle>Engineering science and technology, an international journal</jtitle><date>2020-10</date><risdate>2020</risdate><volume>23</volume><issue>5</issue><spage>967</spage><epage>972</epage><pages>967-972</pages><issn>2215-0986</issn><eissn>2215-0986</eissn><abstract>Estimation of tropospheric wet delay is of great importance for real-time weather forecasting applications. In the last decade, based on troposphere wet delays obtained from Global Navigation Satellite System observations, high temporal and spatial resolution water vapor data can be produced for reliable and accurate weather forecasting. The main objective of this study is to investigate the accuracy of tropospheric wet delay prediction based on artificial neural network technology by the integration of Global Navigation Satellite System and meteorological data from in-situ observations of The New Austrian Meteorological Measuring Network. In the study, artificial neural network model was used to predict the wet troposphere delay up to six hour. Predicted zenith wet delay values were compared with the values estimated from Global Navigation Satellite System observations for validation. The predictions were carried out during humid (August) and dry (December) periods on two reference stations belonging to Echtzeit Positionierung Austria GNSS Network of Austria. The root mean square error of zenith wet delay prediction based on newly designed artificial neural network Model was found 1.5 cm for up to six hours.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jestch.2019.11.006</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2215-0986
ispartof Engineering science and technology, an international journal, 2020-10, Vol.23 (5), p.967-972
issn 2215-0986
2215-0986
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a5bda0d23ec14f9f8024b27e46e5d303
source ScienceDirect®
subjects Artificial neural network
Climate
GNSS meteorology
Troposphere wet delay
Weather forecast
title Prediction of tropospheric wet delay by an artificial neural network model based on meteorological and GNSS data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20tropospheric%20wet%20delay%20by%20an%20artificial%20neural%20network%20model%20based%20on%20meteorological%20and%20GNSS%20data&rft.jtitle=Engineering%20science%20and%20technology,%20an%20international%20journal&rft.au=Selbesoglu,%20Mahmut%20Oguz&rft.date=2020-10&rft.volume=23&rft.issue=5&rft.spage=967&rft.epage=972&rft.pages=967-972&rft.issn=2215-0986&rft.eissn=2215-0986&rft_id=info:doi/10.1016/j.jestch.2019.11.006&rft_dat=%3Celsevier_doaj_%3ES2215098619316003%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-21766a073081db4705c3924a057105eb08d0f16de330c8c03d75679bfb3ff5b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true