Loading…
Rapid Surface Rupture Mapping from Satellite Data: The 2023 Kahramanmaraş, Turkey (Türkiye), Earthquake Sequence
The 6 February 2023 Kahramanmaraş, Turkey (Türkiye), earthquake sequence produced > 500 km of surface rupture primarily on the left-lateral East Anatolian (~345 km) and Çardak (~175 km) faults. Constraining the length and magnitude of surface displacement on the causative faults is critical for l...
Saved in:
Published in: | The Seismic record 2023-10, Vol.3 (4), p.289-298 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The 6 February 2023 Kahramanmaraş, Turkey (Türkiye), earthquake sequence produced > 500 km of surface rupture primarily on the left-lateral East Anatolian (~345 km) and Çardak (~175 km) faults. Constraining the length and magnitude of surface displacement on the causative faults is critical for loss estimates, recovery efforts, rapid identification of impacted infrastructure, and fault displacement hazard analysis. To support these efforts, we rapidly mapped the surface rupture from satellite data with support from remote sensing and field teams, and released the results to the public in near-real time. Detailed surface rupture mapping commenced on 7 February and continued as high-resolution (< 1.0 m/pixel) optical images from WorldView satellites (2023 Maxar) became available. We interpreted the initial simplified rupture trace from subpixel offset fields derived from Advanced Land Observation Satellite2 and Sentinel-1A synthetic aperture radar image pairs available on 8 and 10 February, respectively. The mapping was released publicly on 10 February, with frequent updates, and published in final form four months postearthquake (Reitman, Briggs, et al., 2023). This publicly available, rapid mapping helped guide fieldwork and constrained U.S. Geological Survey finite-fault and loss estimate models, as well as stress change estimates and dynamic rupture models. |
---|---|
ISSN: | 2694-4006 2694-4006 |
DOI: | 10.1785/0320230029 |