Loading…

A Conjunction Method of Wavelet Transform-Particle Swarm Optimization-Support Vector Machine for Streamflow Forecasting

Streamflow forecasting has an important role in water resource management and reservoir operation. Support vector machine (SVM) is an appropriate and suitable method for streamflow prediction due to its best versatility, robustness, and effectiveness. In this study, a wavelet transform particle swar...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Applied Mathematics 2014-01, Vol.2014 (2014), p.132-141-910
Main Authors: Zhang, Fanping, Dai, Huichao, Tang, Deshan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a656t-fef1ea6c6b95a75edcb37f52f30882c67eb392bdcff2077e4539b14c0b32c6c13
cites cdi_FETCH-LOGICAL-a656t-fef1ea6c6b95a75edcb37f52f30882c67eb392bdcff2077e4539b14c0b32c6c13
container_end_page 141-910
container_issue 2014
container_start_page 132
container_title Journal of Applied Mathematics
container_volume 2014
creator Zhang, Fanping
Dai, Huichao
Tang, Deshan
description Streamflow forecasting has an important role in water resource management and reservoir operation. Support vector machine (SVM) is an appropriate and suitable method for streamflow prediction due to its best versatility, robustness, and effectiveness. In this study, a wavelet transform particle swarm optimization support vector machine (WT-PSO-SVM) model is proposed and applied for streamflow time series prediction. Firstly, the streamflow time series were decomposed into various details (Ds) and an approximation (A3) at three resolution levels (21-22-23) using Daubechies (db3) discrete wavelet. Correlation coefficients between each D subtime series and original monthly streamflow time series are calculated. Ds components with high correlation coefficients (D3) are added to the approximation (A3) as the input values of the SVM model. Secondly, the PSO is employed to select the optimal parameters, C, ε, and σ, of the SVM model. Finally, the WT-PSO-SVM models are trained and tested by the monthly streamflow time series of Tangnaihai Station located in Yellow River upper stream from January 1956 to December 2008. The test results indicate that the WT-PSO-SVM approach provide a superior alternative to the single SVM model for forecasting monthly streamflow in situations without formulating models for internal structure of the watershed.
doi_str_mv 10.1155/2014/910196
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a60dc96c2d1848a4b9e5bc9be3b7e51a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A424531761</galeid><airiti_id>P20160908001_201412_201609190040_201609190040_132_141_910</airiti_id><doaj_id>oai_doaj_org_article_a60dc96c2d1848a4b9e5bc9be3b7e51a</doaj_id><sourcerecordid>A424531761</sourcerecordid><originalsourceid>FETCH-LOGICAL-a656t-fef1ea6c6b95a75edcb37f52f30882c67eb392bdcff2077e4539b14c0b32c6c13</originalsourceid><addsrcrecordid>eNqNkkFv1DAQhSMEEqVw4owUiQsCpfU4sR3fqFYUKrVqpW2Bm-U449arJN46Xlbw63Ga1aJyAflge-abZ73xZNlrIEcAjB1TAtWxBAKSP8kOgNeiIKSiT9MZgBSCie_PsxfjuCKEEibhINue5As_rDaDic4P-QXGO9_m3ubf9A_sMObXQQ-j9aEvrnSIznSYL7c69PnlOrre_dJTXbHcrNc-xPwrmuhDfqHNnRswT3X5MgbUve38Nj_1AY0eoxtuX2bPrO5GfLXbD7Ob00_Xiy_F-eXns8XJeaE547GwaAE1N7yRTAuGrWlKYRm1JalrarjAppS0aY21lAiBFStlA5UhTZmyBsrD7GzWbb1eqXVwvQ4_lddOPQR8uFU7W0pz0hrJDW2hrmpdNRJZY2SDZSOQgU5aH2etdfCrZBQ3pnPtI9HFzfkuuttWuldQAQVRA9RJ4t1e4n6DY1S9Gw12nR7Qb0YFXAAHTgj5D5QSwonkMqFv_0JXfhOG1FcFrBJy-muaqKOZutXJrRusj0GbtFrsnfEDWpfiJxVNTQTBp959mAtM8OMY0O6tAlHTvKlp3tQ8b4l-P9Pp51u9df-A38wwJgSt3sOMiJJXKX8157ULLro_fq6SSjJNakLgQRGomkMg06iTxxco6dT96dXyN7xb9Js</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547920592</pqid></control><display><type>article</type><title>A Conjunction Method of Wavelet Transform-Particle Swarm Optimization-Support Vector Machine for Streamflow Forecasting</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><creator>Zhang, Fanping ; Dai, Huichao ; Tang, Deshan</creator><contributor>Li, Y. P.</contributor><creatorcontrib>Zhang, Fanping ; Dai, Huichao ; Tang, Deshan ; Li, Y. P.</creatorcontrib><description>Streamflow forecasting has an important role in water resource management and reservoir operation. Support vector machine (SVM) is an appropriate and suitable method for streamflow prediction due to its best versatility, robustness, and effectiveness. In this study, a wavelet transform particle swarm optimization support vector machine (WT-PSO-SVM) model is proposed and applied for streamflow time series prediction. Firstly, the streamflow time series were decomposed into various details (Ds) and an approximation (A3) at three resolution levels (21-22-23) using Daubechies (db3) discrete wavelet. Correlation coefficients between each D subtime series and original monthly streamflow time series are calculated. Ds components with high correlation coefficients (D3) are added to the approximation (A3) as the input values of the SVM model. Secondly, the PSO is employed to select the optimal parameters, C, ε, and σ, of the SVM model. Finally, the WT-PSO-SVM models are trained and tested by the monthly streamflow time series of Tangnaihai Station located in Yellow River upper stream from January 1956 to December 2008. The test results indicate that the WT-PSO-SVM approach provide a superior alternative to the single SVM model for forecasting monthly streamflow in situations without formulating models for internal structure of the watershed.</description><identifier>ISSN: 1110-757X</identifier><identifier>EISSN: 1687-0042</identifier><identifier>DOI: 10.1155/2014/910196</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Correlation coefficients ; Forecasting ; Machine learning ; Mathematical analysis ; Mathematical models ; Mathematical optimization ; Neural networks ; Regression analysis ; Streamflow ; Support vector machines ; Swarm intelligence ; Time series ; Wavelet ; Wavelet transforms</subject><ispartof>Journal of Applied Mathematics, 2014-01, Vol.2014 (2014), p.132-141-910</ispartof><rights>Copyright © 2014 Fanping Zhang et al.</rights><rights>COPYRIGHT 2014 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2014 Fanping Zhang et al. Fanping Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright 2013 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a656t-fef1ea6c6b95a75edcb37f52f30882c67eb392bdcff2077e4539b14c0b32c6c13</citedby><cites>FETCH-LOGICAL-a656t-fef1ea6c6b95a75edcb37f52f30882c67eb392bdcff2077e4539b14c0b32c6c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1547920592/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1547920592?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,74998</link.rule.ids></links><search><contributor>Li, Y. P.</contributor><creatorcontrib>Zhang, Fanping</creatorcontrib><creatorcontrib>Dai, Huichao</creatorcontrib><creatorcontrib>Tang, Deshan</creatorcontrib><title>A Conjunction Method of Wavelet Transform-Particle Swarm Optimization-Support Vector Machine for Streamflow Forecasting</title><title>Journal of Applied Mathematics</title><description>Streamflow forecasting has an important role in water resource management and reservoir operation. Support vector machine (SVM) is an appropriate and suitable method for streamflow prediction due to its best versatility, robustness, and effectiveness. In this study, a wavelet transform particle swarm optimization support vector machine (WT-PSO-SVM) model is proposed and applied for streamflow time series prediction. Firstly, the streamflow time series were decomposed into various details (Ds) and an approximation (A3) at three resolution levels (21-22-23) using Daubechies (db3) discrete wavelet. Correlation coefficients between each D subtime series and original monthly streamflow time series are calculated. Ds components with high correlation coefficients (D3) are added to the approximation (A3) as the input values of the SVM model. Secondly, the PSO is employed to select the optimal parameters, C, ε, and σ, of the SVM model. Finally, the WT-PSO-SVM models are trained and tested by the monthly streamflow time series of Tangnaihai Station located in Yellow River upper stream from January 1956 to December 2008. The test results indicate that the WT-PSO-SVM approach provide a superior alternative to the single SVM model for forecasting monthly streamflow in situations without formulating models for internal structure of the watershed.</description><subject>Correlation coefficients</subject><subject>Forecasting</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>Neural networks</subject><subject>Regression analysis</subject><subject>Streamflow</subject><subject>Support vector machines</subject><subject>Swarm intelligence</subject><subject>Time series</subject><subject>Wavelet</subject><subject>Wavelet transforms</subject><issn>1110-757X</issn><issn>1687-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkkFv1DAQhSMEEqVw4owUiQsCpfU4sR3fqFYUKrVqpW2Bm-U449arJN46Xlbw63Ga1aJyAflge-abZ73xZNlrIEcAjB1TAtWxBAKSP8kOgNeiIKSiT9MZgBSCie_PsxfjuCKEEibhINue5As_rDaDic4P-QXGO9_m3ubf9A_sMObXQQ-j9aEvrnSIznSYL7c69PnlOrre_dJTXbHcrNc-xPwrmuhDfqHNnRswT3X5MgbUve38Nj_1AY0eoxtuX2bPrO5GfLXbD7Ob00_Xiy_F-eXns8XJeaE547GwaAE1N7yRTAuGrWlKYRm1JalrarjAppS0aY21lAiBFStlA5UhTZmyBsrD7GzWbb1eqXVwvQ4_lddOPQR8uFU7W0pz0hrJDW2hrmpdNRJZY2SDZSOQgU5aH2etdfCrZBQ3pnPtI9HFzfkuuttWuldQAQVRA9RJ4t1e4n6DY1S9Gw12nR7Qb0YFXAAHTgj5D5QSwonkMqFv_0JXfhOG1FcFrBJy-muaqKOZutXJrRusj0GbtFrsnfEDWpfiJxVNTQTBp959mAtM8OMY0O6tAlHTvKlp3tQ8b4l-P9Pp51u9df-A38wwJgSt3sOMiJJXKX8157ULLro_fq6SSjJNakLgQRGomkMg06iTxxco6dT96dXyN7xb9Js</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Zhang, Fanping</creator><creator>Dai, Huichao</creator><creator>Tang, Deshan</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SP</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>A Conjunction Method of Wavelet Transform-Particle Swarm Optimization-Support Vector Machine for Streamflow Forecasting</title><author>Zhang, Fanping ; Dai, Huichao ; Tang, Deshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a656t-fef1ea6c6b95a75edcb37f52f30882c67eb392bdcff2077e4539b14c0b32c6c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Correlation coefficients</topic><topic>Forecasting</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>Neural networks</topic><topic>Regression analysis</topic><topic>Streamflow</topic><topic>Support vector machines</topic><topic>Swarm intelligence</topic><topic>Time series</topic><topic>Wavelet</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Fanping</creatorcontrib><creatorcontrib>Dai, Huichao</creatorcontrib><creatorcontrib>Tang, Deshan</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Fanping</au><au>Dai, Huichao</au><au>Tang, Deshan</au><au>Li, Y. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Conjunction Method of Wavelet Transform-Particle Swarm Optimization-Support Vector Machine for Streamflow Forecasting</atitle><jtitle>Journal of Applied Mathematics</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>132</spage><epage>141-910</epage><pages>132-141-910</pages><issn>1110-757X</issn><eissn>1687-0042</eissn><abstract>Streamflow forecasting has an important role in water resource management and reservoir operation. Support vector machine (SVM) is an appropriate and suitable method for streamflow prediction due to its best versatility, robustness, and effectiveness. In this study, a wavelet transform particle swarm optimization support vector machine (WT-PSO-SVM) model is proposed and applied for streamflow time series prediction. Firstly, the streamflow time series were decomposed into various details (Ds) and an approximation (A3) at three resolution levels (21-22-23) using Daubechies (db3) discrete wavelet. Correlation coefficients between each D subtime series and original monthly streamflow time series are calculated. Ds components with high correlation coefficients (D3) are added to the approximation (A3) as the input values of the SVM model. Secondly, the PSO is employed to select the optimal parameters, C, ε, and σ, of the SVM model. Finally, the WT-PSO-SVM models are trained and tested by the monthly streamflow time series of Tangnaihai Station located in Yellow River upper stream from January 1956 to December 2008. The test results indicate that the WT-PSO-SVM approach provide a superior alternative to the single SVM model for forecasting monthly streamflow in situations without formulating models for internal structure of the watershed.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2014/910196</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-757X
ispartof Journal of Applied Mathematics, 2014-01, Vol.2014 (2014), p.132-141-910
issn 1110-757X
1687-0042
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a60dc96c2d1848a4b9e5bc9be3b7e51a
source Wiley Online Library Open Access; Publicly Available Content Database; IngentaConnect Journals
subjects Correlation coefficients
Forecasting
Machine learning
Mathematical analysis
Mathematical models
Mathematical optimization
Neural networks
Regression analysis
Streamflow
Support vector machines
Swarm intelligence
Time series
Wavelet
Wavelet transforms
title A Conjunction Method of Wavelet Transform-Particle Swarm Optimization-Support Vector Machine for Streamflow Forecasting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Conjunction%20Method%20of%20Wavelet%20Transform-Particle%20Swarm%20Optimization-Support%20Vector%20Machine%20for%20Streamflow%20Forecasting&rft.jtitle=Journal%20of%20Applied%20Mathematics&rft.au=Zhang,%20Fanping&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=132&rft.epage=141-910&rft.pages=132-141-910&rft.issn=1110-757X&rft.eissn=1687-0042&rft_id=info:doi/10.1155/2014/910196&rft_dat=%3Cgale_doaj_%3EA424531761%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a656t-fef1ea6c6b95a75edcb37f52f30882c67eb392bdcff2077e4539b14c0b32c6c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1547920592&rft_id=info:pmid/&rft_galeid=A424531761&rft_airiti_id=P20160908001_201412_201609190040_201609190040_132_141_910&rfr_iscdi=true