Loading…
A Conjunction Method of Wavelet Transform-Particle Swarm Optimization-Support Vector Machine for Streamflow Forecasting
Streamflow forecasting has an important role in water resource management and reservoir operation. Support vector machine (SVM) is an appropriate and suitable method for streamflow prediction due to its best versatility, robustness, and effectiveness. In this study, a wavelet transform particle swar...
Saved in:
Published in: | Journal of Applied Mathematics 2014-01, Vol.2014 (2014), p.132-141-910 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a656t-fef1ea6c6b95a75edcb37f52f30882c67eb392bdcff2077e4539b14c0b32c6c13 |
---|---|
cites | cdi_FETCH-LOGICAL-a656t-fef1ea6c6b95a75edcb37f52f30882c67eb392bdcff2077e4539b14c0b32c6c13 |
container_end_page | 141-910 |
container_issue | 2014 |
container_start_page | 132 |
container_title | Journal of Applied Mathematics |
container_volume | 2014 |
creator | Zhang, Fanping Dai, Huichao Tang, Deshan |
description | Streamflow forecasting has an important role in water resource management and reservoir operation. Support vector machine (SVM) is an appropriate and suitable method for streamflow prediction due to its best versatility, robustness, and effectiveness. In this study, a wavelet transform particle swarm optimization support vector machine (WT-PSO-SVM) model is proposed and applied for streamflow time series prediction. Firstly, the streamflow time series were decomposed into various details (Ds) and an approximation (A3) at three resolution levels (21-22-23) using Daubechies (db3) discrete wavelet. Correlation coefficients between each D subtime series and original monthly streamflow time series are calculated. Ds components with high correlation coefficients (D3) are added to the approximation (A3) as the input values of the SVM model. Secondly, the PSO is employed to select the optimal parameters, C, ε, and σ, of the SVM model. Finally, the WT-PSO-SVM models are trained and tested by the monthly streamflow time series of Tangnaihai Station located in Yellow River upper stream from January 1956 to December 2008. The test results indicate that the WT-PSO-SVM approach provide a superior alternative to the single SVM model for forecasting monthly streamflow in situations without formulating models for internal structure of the watershed. |
doi_str_mv | 10.1155/2014/910196 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a60dc96c2d1848a4b9e5bc9be3b7e51a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A424531761</galeid><airiti_id>P20160908001_201412_201609190040_201609190040_132_141_910</airiti_id><doaj_id>oai_doaj_org_article_a60dc96c2d1848a4b9e5bc9be3b7e51a</doaj_id><sourcerecordid>A424531761</sourcerecordid><originalsourceid>FETCH-LOGICAL-a656t-fef1ea6c6b95a75edcb37f52f30882c67eb392bdcff2077e4539b14c0b32c6c13</originalsourceid><addsrcrecordid>eNqNkkFv1DAQhSMEEqVw4owUiQsCpfU4sR3fqFYUKrVqpW2Bm-U449arJN46Xlbw63Ga1aJyAflge-abZ73xZNlrIEcAjB1TAtWxBAKSP8kOgNeiIKSiT9MZgBSCie_PsxfjuCKEEibhINue5As_rDaDic4P-QXGO9_m3ubf9A_sMObXQQ-j9aEvrnSIznSYL7c69PnlOrre_dJTXbHcrNc-xPwrmuhDfqHNnRswT3X5MgbUve38Nj_1AY0eoxtuX2bPrO5GfLXbD7Ob00_Xiy_F-eXns8XJeaE547GwaAE1N7yRTAuGrWlKYRm1JalrarjAppS0aY21lAiBFStlA5UhTZmyBsrD7GzWbb1eqXVwvQ4_lddOPQR8uFU7W0pz0hrJDW2hrmpdNRJZY2SDZSOQgU5aH2etdfCrZBQ3pnPtI9HFzfkuuttWuldQAQVRA9RJ4t1e4n6DY1S9Gw12nR7Qb0YFXAAHTgj5D5QSwonkMqFv_0JXfhOG1FcFrBJy-muaqKOZutXJrRusj0GbtFrsnfEDWpfiJxVNTQTBp959mAtM8OMY0O6tAlHTvKlp3tQ8b4l-P9Pp51u9df-A38wwJgSt3sOMiJJXKX8157ULLro_fq6SSjJNakLgQRGomkMg06iTxxco6dT96dXyN7xb9Js</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547920592</pqid></control><display><type>article</type><title>A Conjunction Method of Wavelet Transform-Particle Swarm Optimization-Support Vector Machine for Streamflow Forecasting</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><creator>Zhang, Fanping ; Dai, Huichao ; Tang, Deshan</creator><contributor>Li, Y. P.</contributor><creatorcontrib>Zhang, Fanping ; Dai, Huichao ; Tang, Deshan ; Li, Y. P.</creatorcontrib><description>Streamflow forecasting has an important role in water resource management and reservoir operation. Support vector machine (SVM) is an appropriate and suitable method for streamflow prediction due to its best versatility, robustness, and effectiveness. In this study, a wavelet transform particle swarm optimization support vector machine (WT-PSO-SVM) model is proposed and applied for streamflow time series prediction. Firstly, the streamflow time series were decomposed into various details (Ds) and an approximation (A3) at three resolution levels (21-22-23) using Daubechies (db3) discrete wavelet. Correlation coefficients between each D subtime series and original monthly streamflow time series are calculated. Ds components with high correlation coefficients (D3) are added to the approximation (A3) as the input values of the SVM model. Secondly, the PSO is employed to select the optimal parameters, C, ε, and σ, of the SVM model. Finally, the WT-PSO-SVM models are trained and tested by the monthly streamflow time series of Tangnaihai Station located in Yellow River upper stream from January 1956 to December 2008. The test results indicate that the WT-PSO-SVM approach provide a superior alternative to the single SVM model for forecasting monthly streamflow in situations without formulating models for internal structure of the watershed.</description><identifier>ISSN: 1110-757X</identifier><identifier>EISSN: 1687-0042</identifier><identifier>DOI: 10.1155/2014/910196</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Correlation coefficients ; Forecasting ; Machine learning ; Mathematical analysis ; Mathematical models ; Mathematical optimization ; Neural networks ; Regression analysis ; Streamflow ; Support vector machines ; Swarm intelligence ; Time series ; Wavelet ; Wavelet transforms</subject><ispartof>Journal of Applied Mathematics, 2014-01, Vol.2014 (2014), p.132-141-910</ispartof><rights>Copyright © 2014 Fanping Zhang et al.</rights><rights>COPYRIGHT 2014 John Wiley & Sons, Inc.</rights><rights>Copyright © 2014 Fanping Zhang et al. Fanping Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright 2013 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a656t-fef1ea6c6b95a75edcb37f52f30882c67eb392bdcff2077e4539b14c0b32c6c13</citedby><cites>FETCH-LOGICAL-a656t-fef1ea6c6b95a75edcb37f52f30882c67eb392bdcff2077e4539b14c0b32c6c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1547920592/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1547920592?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,74998</link.rule.ids></links><search><contributor>Li, Y. P.</contributor><creatorcontrib>Zhang, Fanping</creatorcontrib><creatorcontrib>Dai, Huichao</creatorcontrib><creatorcontrib>Tang, Deshan</creatorcontrib><title>A Conjunction Method of Wavelet Transform-Particle Swarm Optimization-Support Vector Machine for Streamflow Forecasting</title><title>Journal of Applied Mathematics</title><description>Streamflow forecasting has an important role in water resource management and reservoir operation. Support vector machine (SVM) is an appropriate and suitable method for streamflow prediction due to its best versatility, robustness, and effectiveness. In this study, a wavelet transform particle swarm optimization support vector machine (WT-PSO-SVM) model is proposed and applied for streamflow time series prediction. Firstly, the streamflow time series were decomposed into various details (Ds) and an approximation (A3) at three resolution levels (21-22-23) using Daubechies (db3) discrete wavelet. Correlation coefficients between each D subtime series and original monthly streamflow time series are calculated. Ds components with high correlation coefficients (D3) are added to the approximation (A3) as the input values of the SVM model. Secondly, the PSO is employed to select the optimal parameters, C, ε, and σ, of the SVM model. Finally, the WT-PSO-SVM models are trained and tested by the monthly streamflow time series of Tangnaihai Station located in Yellow River upper stream from January 1956 to December 2008. The test results indicate that the WT-PSO-SVM approach provide a superior alternative to the single SVM model for forecasting monthly streamflow in situations without formulating models for internal structure of the watershed.</description><subject>Correlation coefficients</subject><subject>Forecasting</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>Neural networks</subject><subject>Regression analysis</subject><subject>Streamflow</subject><subject>Support vector machines</subject><subject>Swarm intelligence</subject><subject>Time series</subject><subject>Wavelet</subject><subject>Wavelet transforms</subject><issn>1110-757X</issn><issn>1687-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkkFv1DAQhSMEEqVw4owUiQsCpfU4sR3fqFYUKrVqpW2Bm-U449arJN46Xlbw63Ga1aJyAflge-abZ73xZNlrIEcAjB1TAtWxBAKSP8kOgNeiIKSiT9MZgBSCie_PsxfjuCKEEibhINue5As_rDaDic4P-QXGO9_m3ubf9A_sMObXQQ-j9aEvrnSIznSYL7c69PnlOrre_dJTXbHcrNc-xPwrmuhDfqHNnRswT3X5MgbUve38Nj_1AY0eoxtuX2bPrO5GfLXbD7Ob00_Xiy_F-eXns8XJeaE547GwaAE1N7yRTAuGrWlKYRm1JalrarjAppS0aY21lAiBFStlA5UhTZmyBsrD7GzWbb1eqXVwvQ4_lddOPQR8uFU7W0pz0hrJDW2hrmpdNRJZY2SDZSOQgU5aH2etdfCrZBQ3pnPtI9HFzfkuuttWuldQAQVRA9RJ4t1e4n6DY1S9Gw12nR7Qb0YFXAAHTgj5D5QSwonkMqFv_0JXfhOG1FcFrBJy-muaqKOZutXJrRusj0GbtFrsnfEDWpfiJxVNTQTBp959mAtM8OMY0O6tAlHTvKlp3tQ8b4l-P9Pp51u9df-A38wwJgSt3sOMiJJXKX8157ULLro_fq6SSjJNakLgQRGomkMg06iTxxco6dT96dXyN7xb9Js</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Zhang, Fanping</creator><creator>Dai, Huichao</creator><creator>Tang, Deshan</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SP</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>A Conjunction Method of Wavelet Transform-Particle Swarm Optimization-Support Vector Machine for Streamflow Forecasting</title><author>Zhang, Fanping ; Dai, Huichao ; Tang, Deshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a656t-fef1ea6c6b95a75edcb37f52f30882c67eb392bdcff2077e4539b14c0b32c6c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Correlation coefficients</topic><topic>Forecasting</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>Neural networks</topic><topic>Regression analysis</topic><topic>Streamflow</topic><topic>Support vector machines</topic><topic>Swarm intelligence</topic><topic>Time series</topic><topic>Wavelet</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Fanping</creatorcontrib><creatorcontrib>Dai, Huichao</creatorcontrib><creatorcontrib>Tang, Deshan</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Electronics & Communications Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Fanping</au><au>Dai, Huichao</au><au>Tang, Deshan</au><au>Li, Y. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Conjunction Method of Wavelet Transform-Particle Swarm Optimization-Support Vector Machine for Streamflow Forecasting</atitle><jtitle>Journal of Applied Mathematics</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>132</spage><epage>141-910</epage><pages>132-141-910</pages><issn>1110-757X</issn><eissn>1687-0042</eissn><abstract>Streamflow forecasting has an important role in water resource management and reservoir operation. Support vector machine (SVM) is an appropriate and suitable method for streamflow prediction due to its best versatility, robustness, and effectiveness. In this study, a wavelet transform particle swarm optimization support vector machine (WT-PSO-SVM) model is proposed and applied for streamflow time series prediction. Firstly, the streamflow time series were decomposed into various details (Ds) and an approximation (A3) at three resolution levels (21-22-23) using Daubechies (db3) discrete wavelet. Correlation coefficients between each D subtime series and original monthly streamflow time series are calculated. Ds components with high correlation coefficients (D3) are added to the approximation (A3) as the input values of the SVM model. Secondly, the PSO is employed to select the optimal parameters, C, ε, and σ, of the SVM model. Finally, the WT-PSO-SVM models are trained and tested by the monthly streamflow time series of Tangnaihai Station located in Yellow River upper stream from January 1956 to December 2008. The test results indicate that the WT-PSO-SVM approach provide a superior alternative to the single SVM model for forecasting monthly streamflow in situations without formulating models for internal structure of the watershed.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2014/910196</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1110-757X |
ispartof | Journal of Applied Mathematics, 2014-01, Vol.2014 (2014), p.132-141-910 |
issn | 1110-757X 1687-0042 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a60dc96c2d1848a4b9e5bc9be3b7e51a |
source | Wiley Online Library Open Access; Publicly Available Content Database; IngentaConnect Journals |
subjects | Correlation coefficients Forecasting Machine learning Mathematical analysis Mathematical models Mathematical optimization Neural networks Regression analysis Streamflow Support vector machines Swarm intelligence Time series Wavelet Wavelet transforms |
title | A Conjunction Method of Wavelet Transform-Particle Swarm Optimization-Support Vector Machine for Streamflow Forecasting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Conjunction%20Method%20of%20Wavelet%20Transform-Particle%20Swarm%20Optimization-Support%20Vector%20Machine%20for%20Streamflow%20Forecasting&rft.jtitle=Journal%20of%20Applied%20Mathematics&rft.au=Zhang,%20Fanping&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=132&rft.epage=141-910&rft.pages=132-141-910&rft.issn=1110-757X&rft.eissn=1687-0042&rft_id=info:doi/10.1155/2014/910196&rft_dat=%3Cgale_doaj_%3EA424531761%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a656t-fef1ea6c6b95a75edcb37f52f30882c67eb392bdcff2077e4539b14c0b32c6c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1547920592&rft_id=info:pmid/&rft_galeid=A424531761&rft_airiti_id=P20160908001_201412_201609190040_201609190040_132_141_910&rfr_iscdi=true |