Loading…
Explore how immobilization strategies affected immunosensor performance by comparing four methods for antibody immobilization on electrode surfaces
Among the common methods used for antibody immobilization on electrode surfaces, which is the best available option for immunosensor fabrication? To answer this question, we first used graphene-chitosan-Au/Pt nanoparticle (G-Chi-Au/PtNP) nanocomposites to modify a gold electrode (GE). Second, avian...
Saved in:
Published in: | Scientific reports 2022-12, Vol.12 (1), p.22444-11, Article 22444 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-4c3bfaa0eee56f78a2935ae245a63d5c975a367bf5810dc070dd86a6209daf7a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-4c3bfaa0eee56f78a2935ae245a63d5c975a367bf5810dc070dd86a6209daf7a3 |
container_end_page | 11 |
container_issue | 1 |
container_start_page | 22444 |
container_title | Scientific reports |
container_volume | 12 |
creator | Huang, Jiaoling Xie, Zhixun Xie, Liji Luo, Sisi Zeng, Tingting Zhang, Yanfang Zhang, Minxiu Wang, Sheng Li, Meng Wei, You Fan, Qing Xie, Zhiqin Deng, Xianwen Li, Dan |
description | Among the common methods used for antibody immobilization on electrode surfaces, which is the best available option for immunosensor fabrication? To answer this question, we first used graphene-chitosan-Au/Pt nanoparticle (G-Chi-Au/PtNP) nanocomposites to modify a gold electrode (GE). Second, avian reovirus monoclonal antibody (ARV/MAb) was immobilized on the GE surface by using four common methods, which included glutaraldehyde (Glu), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/
N
-hydroxysuccinimide (EDC/NHS), direct incubation or cysteamine hydrochloride (CH). Third, the electrodes were incubated with bovine serum albumin, four different avian reovirus (ARV) immunosensors were obtained. Last, the four ARV immunosensors were used to detect ARV. The results showed that the ARV immunosensors immobilized via Glu, EDC/NHS, direct incubation or CH showed detection limits of 10
0.63
EID
50
mL
−1
, 10
0.48
EID
50
mL
−1
, 10
0.37
EID
50
mL
−1
and 10
0.46
EID
50
mL
−1
ARV (S/N = 3) and quantification limits of 10
1.15
EID
50
mL
−1
, and 10
1.00
EID
50
mL
−1
, 10
0.89
EID
50
mL
−1
and 10
0.98
EID
50
mL
−1
ARV (S/N = 10), respectively, while the linear range of the immunosensor immobilized via CH (0–10
5.82
EID
50
mL
−1
ARV) was 10 times broader than that of the immunosensor immobilized via direct incubation (0–10
4.82
EID
50
mL
−1
ARV) and 100 times broader than those of the immunosensors immobilized via Glu (0–10
3.82
EID
50
mL
−1
ARV) or EDC/NHS (0–10
3.82
EID
50
mL
−1
ARV). And the four immunosensors showed excellent selectivity, reproducibility and stability. |
doi_str_mv | 10.1038/s41598-022-26768-w |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a60f01fca1024cdd89b2e663145960a3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a60f01fca1024cdd89b2e663145960a3</doaj_id><sourcerecordid>2758461149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-4c3bfaa0eee56f78a2935ae245a63d5c975a367bf5810dc070dd86a6209daf7a3</originalsourceid><addsrcrecordid>eNp9kstu1DAUhiMEolXpC7BAlliHOr4l3iChqtBKldjA2jqxj2c8SuJgZxiG1-CF8XRKaVlgWfLtP9-xj_-qet3Qdw3l3UUWjdRdTRmrmWpVV--eVaeMClkzztjzR_OT6jznDS1NMi0a_bI64Uq2konutPp19WMeYkKyjjsSxjH2YQg_YQlxInlJsOAqYCbgPdoF3UGynWLGKcdEZkw-phEmi6TfExvHGVKYVsTHbSIjLuvoclkkAtMS-uj2_6YoHYdCTtEhydvkwWJ-Vb3wMGQ8vx_Pqq8fr75cXte3nz_dXH64ra0UdKmF5b0HoIgolW87YJpLQCYkKO6k1a0Ertrey66hztKWOtcpUIxqB74FflbdHLkuwsbMKYyQ9iZCMHcbMa0MpCXYAQ0o6mnjLTSUCVs4umeoFG-E1IoCL6z3R9a87Ud0FqdSvOEJ9OnJFNZmFb8b3WrRdroA3t4DUvy2xbyYTSniVN5vWCs7oZpGHFTsqLIp5pzQP2RoqDn4whx9YYovzJ0vzK4EvXl8t4eQPy4oAn4U5PnwfZj-5v4P9jfuMMnP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758461149</pqid></control><display><type>article</type><title>Explore how immobilization strategies affected immunosensor performance by comparing four methods for antibody immobilization on electrode surfaces</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Huang, Jiaoling ; Xie, Zhixun ; Xie, Liji ; Luo, Sisi ; Zeng, Tingting ; Zhang, Yanfang ; Zhang, Minxiu ; Wang, Sheng ; Li, Meng ; Wei, You ; Fan, Qing ; Xie, Zhiqin ; Deng, Xianwen ; Li, Dan</creator><creatorcontrib>Huang, Jiaoling ; Xie, Zhixun ; Xie, Liji ; Luo, Sisi ; Zeng, Tingting ; Zhang, Yanfang ; Zhang, Minxiu ; Wang, Sheng ; Li, Meng ; Wei, You ; Fan, Qing ; Xie, Zhiqin ; Deng, Xianwen ; Li, Dan</creatorcontrib><description>Among the common methods used for antibody immobilization on electrode surfaces, which is the best available option for immunosensor fabrication? To answer this question, we first used graphene-chitosan-Au/Pt nanoparticle (G-Chi-Au/PtNP) nanocomposites to modify a gold electrode (GE). Second, avian reovirus monoclonal antibody (ARV/MAb) was immobilized on the GE surface by using four common methods, which included glutaraldehyde (Glu), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/
N
-hydroxysuccinimide (EDC/NHS), direct incubation or cysteamine hydrochloride (CH). Third, the electrodes were incubated with bovine serum albumin, four different avian reovirus (ARV) immunosensors were obtained. Last, the four ARV immunosensors were used to detect ARV. The results showed that the ARV immunosensors immobilized via Glu, EDC/NHS, direct incubation or CH showed detection limits of 10
0.63
EID
50
mL
−1
, 10
0.48
EID
50
mL
−1
, 10
0.37
EID
50
mL
−1
and 10
0.46
EID
50
mL
−1
ARV (S/N = 3) and quantification limits of 10
1.15
EID
50
mL
−1
, and 10
1.00
EID
50
mL
−1
, 10
0.89
EID
50
mL
−1
and 10
0.98
EID
50
mL
−1
ARV (S/N = 10), respectively, while the linear range of the immunosensor immobilized via CH (0–10
5.82
EID
50
mL
−1
ARV) was 10 times broader than that of the immunosensor immobilized via direct incubation (0–10
4.82
EID
50
mL
−1
ARV) and 100 times broader than those of the immunosensors immobilized via Glu (0–10
3.82
EID
50
mL
−1
ARV) or EDC/NHS (0–10
3.82
EID
50
mL
−1
ARV). And the four immunosensors showed excellent selectivity, reproducibility and stability.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-26768-w</identifier><identifier>PMID: 36575248</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/250 ; 631/92 ; Antibodies ; Biosensing Techniques - methods ; Bovine serum albumin ; Carbodiimide ; Chitosan ; Detection limits ; Electrochemical Techniques - methods ; Electrodes ; Fabrication ; Gold ; Humanities and Social Sciences ; Immobilization ; Immunoassay - methods ; Immunosensors ; Incubation ; Metal Nanoparticles ; Monoclonal antibodies ; multidisciplinary ; Nanocomposites ; Nanoparticles ; Reproducibility of Results ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2022-12, Vol.12 (1), p.22444-11, Article 22444</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-4c3bfaa0eee56f78a2935ae245a63d5c975a367bf5810dc070dd86a6209daf7a3</citedby><cites>FETCH-LOGICAL-c540t-4c3bfaa0eee56f78a2935ae245a63d5c975a367bf5810dc070dd86a6209daf7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2758461149/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2758461149?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36575248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Jiaoling</creatorcontrib><creatorcontrib>Xie, Zhixun</creatorcontrib><creatorcontrib>Xie, Liji</creatorcontrib><creatorcontrib>Luo, Sisi</creatorcontrib><creatorcontrib>Zeng, Tingting</creatorcontrib><creatorcontrib>Zhang, Yanfang</creatorcontrib><creatorcontrib>Zhang, Minxiu</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Wei, You</creatorcontrib><creatorcontrib>Fan, Qing</creatorcontrib><creatorcontrib>Xie, Zhiqin</creatorcontrib><creatorcontrib>Deng, Xianwen</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><title>Explore how immobilization strategies affected immunosensor performance by comparing four methods for antibody immobilization on electrode surfaces</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Among the common methods used for antibody immobilization on electrode surfaces, which is the best available option for immunosensor fabrication? To answer this question, we first used graphene-chitosan-Au/Pt nanoparticle (G-Chi-Au/PtNP) nanocomposites to modify a gold electrode (GE). Second, avian reovirus monoclonal antibody (ARV/MAb) was immobilized on the GE surface by using four common methods, which included glutaraldehyde (Glu), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/
N
-hydroxysuccinimide (EDC/NHS), direct incubation or cysteamine hydrochloride (CH). Third, the electrodes were incubated with bovine serum albumin, four different avian reovirus (ARV) immunosensors were obtained. Last, the four ARV immunosensors were used to detect ARV. The results showed that the ARV immunosensors immobilized via Glu, EDC/NHS, direct incubation or CH showed detection limits of 10
0.63
EID
50
mL
−1
, 10
0.48
EID
50
mL
−1
, 10
0.37
EID
50
mL
−1
and 10
0.46
EID
50
mL
−1
ARV (S/N = 3) and quantification limits of 10
1.15
EID
50
mL
−1
, and 10
1.00
EID
50
mL
−1
, 10
0.89
EID
50
mL
−1
and 10
0.98
EID
50
mL
−1
ARV (S/N = 10), respectively, while the linear range of the immunosensor immobilized via CH (0–10
5.82
EID
50
mL
−1
ARV) was 10 times broader than that of the immunosensor immobilized via direct incubation (0–10
4.82
EID
50
mL
−1
ARV) and 100 times broader than those of the immunosensors immobilized via Glu (0–10
3.82
EID
50
mL
−1
ARV) or EDC/NHS (0–10
3.82
EID
50
mL
−1
ARV). And the four immunosensors showed excellent selectivity, reproducibility and stability.</description><subject>631/250</subject><subject>631/92</subject><subject>Antibodies</subject><subject>Biosensing Techniques - methods</subject><subject>Bovine serum albumin</subject><subject>Carbodiimide</subject><subject>Chitosan</subject><subject>Detection limits</subject><subject>Electrochemical Techniques - methods</subject><subject>Electrodes</subject><subject>Fabrication</subject><subject>Gold</subject><subject>Humanities and Social Sciences</subject><subject>Immobilization</subject><subject>Immunoassay - methods</subject><subject>Immunosensors</subject><subject>Incubation</subject><subject>Metal Nanoparticles</subject><subject>Monoclonal antibodies</subject><subject>multidisciplinary</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Reproducibility of Results</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1DAUhiMEolXpC7BAlliHOr4l3iChqtBKldjA2jqxj2c8SuJgZxiG1-CF8XRKaVlgWfLtP9-xj_-qet3Qdw3l3UUWjdRdTRmrmWpVV--eVaeMClkzztjzR_OT6jznDS1NMi0a_bI64Uq2konutPp19WMeYkKyjjsSxjH2YQg_YQlxInlJsOAqYCbgPdoF3UGynWLGKcdEZkw-phEmi6TfExvHGVKYVsTHbSIjLuvoclkkAtMS-uj2_6YoHYdCTtEhydvkwWJ-Vb3wMGQ8vx_Pqq8fr75cXte3nz_dXH64ra0UdKmF5b0HoIgolW87YJpLQCYkKO6k1a0Ertrey66hztKWOtcpUIxqB74FflbdHLkuwsbMKYyQ9iZCMHcbMa0MpCXYAQ0o6mnjLTSUCVs4umeoFG-E1IoCL6z3R9a87Ud0FqdSvOEJ9OnJFNZmFb8b3WrRdroA3t4DUvy2xbyYTSniVN5vWCs7oZpGHFTsqLIp5pzQP2RoqDn4whx9YYovzJ0vzK4EvXl8t4eQPy4oAn4U5PnwfZj-5v4P9jfuMMnP</recordid><startdate>20221223</startdate><enddate>20221223</enddate><creator>Huang, Jiaoling</creator><creator>Xie, Zhixun</creator><creator>Xie, Liji</creator><creator>Luo, Sisi</creator><creator>Zeng, Tingting</creator><creator>Zhang, Yanfang</creator><creator>Zhang, Minxiu</creator><creator>Wang, Sheng</creator><creator>Li, Meng</creator><creator>Wei, You</creator><creator>Fan, Qing</creator><creator>Xie, Zhiqin</creator><creator>Deng, Xianwen</creator><creator>Li, Dan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20221223</creationdate><title>Explore how immobilization strategies affected immunosensor performance by comparing four methods for antibody immobilization on electrode surfaces</title><author>Huang, Jiaoling ; Xie, Zhixun ; Xie, Liji ; Luo, Sisi ; Zeng, Tingting ; Zhang, Yanfang ; Zhang, Minxiu ; Wang, Sheng ; Li, Meng ; Wei, You ; Fan, Qing ; Xie, Zhiqin ; Deng, Xianwen ; Li, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-4c3bfaa0eee56f78a2935ae245a63d5c975a367bf5810dc070dd86a6209daf7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/250</topic><topic>631/92</topic><topic>Antibodies</topic><topic>Biosensing Techniques - methods</topic><topic>Bovine serum albumin</topic><topic>Carbodiimide</topic><topic>Chitosan</topic><topic>Detection limits</topic><topic>Electrochemical Techniques - methods</topic><topic>Electrodes</topic><topic>Fabrication</topic><topic>Gold</topic><topic>Humanities and Social Sciences</topic><topic>Immobilization</topic><topic>Immunoassay - methods</topic><topic>Immunosensors</topic><topic>Incubation</topic><topic>Metal Nanoparticles</topic><topic>Monoclonal antibodies</topic><topic>multidisciplinary</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Reproducibility of Results</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jiaoling</creatorcontrib><creatorcontrib>Xie, Zhixun</creatorcontrib><creatorcontrib>Xie, Liji</creatorcontrib><creatorcontrib>Luo, Sisi</creatorcontrib><creatorcontrib>Zeng, Tingting</creatorcontrib><creatorcontrib>Zhang, Yanfang</creatorcontrib><creatorcontrib>Zhang, Minxiu</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Wei, You</creatorcontrib><creatorcontrib>Fan, Qing</creatorcontrib><creatorcontrib>Xie, Zhiqin</creatorcontrib><creatorcontrib>Deng, Xianwen</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jiaoling</au><au>Xie, Zhixun</au><au>Xie, Liji</au><au>Luo, Sisi</au><au>Zeng, Tingting</au><au>Zhang, Yanfang</au><au>Zhang, Minxiu</au><au>Wang, Sheng</au><au>Li, Meng</au><au>Wei, You</au><au>Fan, Qing</au><au>Xie, Zhiqin</au><au>Deng, Xianwen</au><au>Li, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explore how immobilization strategies affected immunosensor performance by comparing four methods for antibody immobilization on electrode surfaces</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2022-12-23</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>22444</spage><epage>11</epage><pages>22444-11</pages><artnum>22444</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Among the common methods used for antibody immobilization on electrode surfaces, which is the best available option for immunosensor fabrication? To answer this question, we first used graphene-chitosan-Au/Pt nanoparticle (G-Chi-Au/PtNP) nanocomposites to modify a gold electrode (GE). Second, avian reovirus monoclonal antibody (ARV/MAb) was immobilized on the GE surface by using four common methods, which included glutaraldehyde (Glu), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/
N
-hydroxysuccinimide (EDC/NHS), direct incubation or cysteamine hydrochloride (CH). Third, the electrodes were incubated with bovine serum albumin, four different avian reovirus (ARV) immunosensors were obtained. Last, the four ARV immunosensors were used to detect ARV. The results showed that the ARV immunosensors immobilized via Glu, EDC/NHS, direct incubation or CH showed detection limits of 10
0.63
EID
50
mL
−1
, 10
0.48
EID
50
mL
−1
, 10
0.37
EID
50
mL
−1
and 10
0.46
EID
50
mL
−1
ARV (S/N = 3) and quantification limits of 10
1.15
EID
50
mL
−1
, and 10
1.00
EID
50
mL
−1
, 10
0.89
EID
50
mL
−1
and 10
0.98
EID
50
mL
−1
ARV (S/N = 10), respectively, while the linear range of the immunosensor immobilized via CH (0–10
5.82
EID
50
mL
−1
ARV) was 10 times broader than that of the immunosensor immobilized via direct incubation (0–10
4.82
EID
50
mL
−1
ARV) and 100 times broader than those of the immunosensors immobilized via Glu (0–10
3.82
EID
50
mL
−1
ARV) or EDC/NHS (0–10
3.82
EID
50
mL
−1
ARV). And the four immunosensors showed excellent selectivity, reproducibility and stability.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36575248</pmid><doi>10.1038/s41598-022-26768-w</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2022-12, Vol.12 (1), p.22444-11, Article 22444 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a60f01fca1024cdd89b2e663145960a3 |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/250 631/92 Antibodies Biosensing Techniques - methods Bovine serum albumin Carbodiimide Chitosan Detection limits Electrochemical Techniques - methods Electrodes Fabrication Gold Humanities and Social Sciences Immobilization Immunoassay - methods Immunosensors Incubation Metal Nanoparticles Monoclonal antibodies multidisciplinary Nanocomposites Nanoparticles Reproducibility of Results Science Science (multidisciplinary) |
title | Explore how immobilization strategies affected immunosensor performance by comparing four methods for antibody immobilization on electrode surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explore%20how%20immobilization%20strategies%20affected%20immunosensor%20performance%20by%20comparing%20four%20methods%20for%20antibody%20immobilization%20on%20electrode%20surfaces&rft.jtitle=Scientific%20reports&rft.au=Huang,%20Jiaoling&rft.date=2022-12-23&rft.volume=12&rft.issue=1&rft.spage=22444&rft.epage=11&rft.pages=22444-11&rft.artnum=22444&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-26768-w&rft_dat=%3Cproquest_doaj_%3E2758461149%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-4c3bfaa0eee56f78a2935ae245a63d5c975a367bf5810dc070dd86a6209daf7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2758461149&rft_id=info:pmid/36575248&rfr_iscdi=true |