Loading…

Explore how immobilization strategies affected immunosensor performance by comparing four methods for antibody immobilization on electrode surfaces

Among the common methods used for antibody immobilization on electrode surfaces, which is the best available option for immunosensor fabrication? To answer this question, we first used graphene-chitosan-Au/Pt nanoparticle (G-Chi-Au/PtNP) nanocomposites to modify a gold electrode (GE). Second, avian...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2022-12, Vol.12 (1), p.22444-11, Article 22444
Main Authors: Huang, Jiaoling, Xie, Zhixun, Xie, Liji, Luo, Sisi, Zeng, Tingting, Zhang, Yanfang, Zhang, Minxiu, Wang, Sheng, Li, Meng, Wei, You, Fan, Qing, Xie, Zhiqin, Deng, Xianwen, Li, Dan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-4c3bfaa0eee56f78a2935ae245a63d5c975a367bf5810dc070dd86a6209daf7a3
cites cdi_FETCH-LOGICAL-c540t-4c3bfaa0eee56f78a2935ae245a63d5c975a367bf5810dc070dd86a6209daf7a3
container_end_page 11
container_issue 1
container_start_page 22444
container_title Scientific reports
container_volume 12
creator Huang, Jiaoling
Xie, Zhixun
Xie, Liji
Luo, Sisi
Zeng, Tingting
Zhang, Yanfang
Zhang, Minxiu
Wang, Sheng
Li, Meng
Wei, You
Fan, Qing
Xie, Zhiqin
Deng, Xianwen
Li, Dan
description Among the common methods used for antibody immobilization on electrode surfaces, which is the best available option for immunosensor fabrication? To answer this question, we first used graphene-chitosan-Au/Pt nanoparticle (G-Chi-Au/PtNP) nanocomposites to modify a gold electrode (GE). Second, avian reovirus monoclonal antibody (ARV/MAb) was immobilized on the GE surface by using four common methods, which included glutaraldehyde (Glu), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/ N -hydroxysuccinimide (EDC/NHS), direct incubation or cysteamine hydrochloride (CH). Third, the electrodes were incubated with bovine serum albumin, four different avian reovirus (ARV) immunosensors were obtained. Last, the four ARV immunosensors were used to detect ARV. The results showed that the ARV immunosensors immobilized via Glu, EDC/NHS, direct incubation or CH showed detection limits of 10 0.63 EID 50  mL −1 , 10 0.48 EID 50  mL −1 , 10 0.37 EID 50  mL −1 and 10 0.46 EID 50  mL −1 ARV (S/N = 3) and quantification limits of 10 1.15 EID 50  mL −1 , and 10 1.00 EID 50  mL −1 , 10 0.89 EID 50  mL −1 and 10 0.98 EID 50  mL −1 ARV (S/N = 10), respectively, while the linear range of the immunosensor immobilized via CH (0–10 5.82 EID 50  mL −1 ARV) was 10 times broader than that of the immunosensor immobilized via direct incubation (0–10 4.82 EID 50  mL −1 ARV) and 100 times broader than those of the immunosensors immobilized via Glu (0–10 3.82 EID 50  mL −1 ARV) or EDC/NHS (0–10 3.82 EID 50  mL −1 ARV). And the four immunosensors showed excellent selectivity, reproducibility and stability.
doi_str_mv 10.1038/s41598-022-26768-w
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a60f01fca1024cdd89b2e663145960a3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a60f01fca1024cdd89b2e663145960a3</doaj_id><sourcerecordid>2758461149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-4c3bfaa0eee56f78a2935ae245a63d5c975a367bf5810dc070dd86a6209daf7a3</originalsourceid><addsrcrecordid>eNp9kstu1DAUhiMEolXpC7BAlliHOr4l3iChqtBKldjA2jqxj2c8SuJgZxiG1-CF8XRKaVlgWfLtP9-xj_-qet3Qdw3l3UUWjdRdTRmrmWpVV--eVaeMClkzztjzR_OT6jznDS1NMi0a_bI64Uq2konutPp19WMeYkKyjjsSxjH2YQg_YQlxInlJsOAqYCbgPdoF3UGynWLGKcdEZkw-phEmi6TfExvHGVKYVsTHbSIjLuvoclkkAtMS-uj2_6YoHYdCTtEhydvkwWJ-Vb3wMGQ8vx_Pqq8fr75cXte3nz_dXH64ra0UdKmF5b0HoIgolW87YJpLQCYkKO6k1a0Ertrey66hztKWOtcpUIxqB74FflbdHLkuwsbMKYyQ9iZCMHcbMa0MpCXYAQ0o6mnjLTSUCVs4umeoFG-E1IoCL6z3R9a87Ud0FqdSvOEJ9OnJFNZmFb8b3WrRdroA3t4DUvy2xbyYTSniVN5vWCs7oZpGHFTsqLIp5pzQP2RoqDn4whx9YYovzJ0vzK4EvXl8t4eQPy4oAn4U5PnwfZj-5v4P9jfuMMnP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758461149</pqid></control><display><type>article</type><title>Explore how immobilization strategies affected immunosensor performance by comparing four methods for antibody immobilization on electrode surfaces</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Huang, Jiaoling ; Xie, Zhixun ; Xie, Liji ; Luo, Sisi ; Zeng, Tingting ; Zhang, Yanfang ; Zhang, Minxiu ; Wang, Sheng ; Li, Meng ; Wei, You ; Fan, Qing ; Xie, Zhiqin ; Deng, Xianwen ; Li, Dan</creator><creatorcontrib>Huang, Jiaoling ; Xie, Zhixun ; Xie, Liji ; Luo, Sisi ; Zeng, Tingting ; Zhang, Yanfang ; Zhang, Minxiu ; Wang, Sheng ; Li, Meng ; Wei, You ; Fan, Qing ; Xie, Zhiqin ; Deng, Xianwen ; Li, Dan</creatorcontrib><description>Among the common methods used for antibody immobilization on electrode surfaces, which is the best available option for immunosensor fabrication? To answer this question, we first used graphene-chitosan-Au/Pt nanoparticle (G-Chi-Au/PtNP) nanocomposites to modify a gold electrode (GE). Second, avian reovirus monoclonal antibody (ARV/MAb) was immobilized on the GE surface by using four common methods, which included glutaraldehyde (Glu), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/ N -hydroxysuccinimide (EDC/NHS), direct incubation or cysteamine hydrochloride (CH). Third, the electrodes were incubated with bovine serum albumin, four different avian reovirus (ARV) immunosensors were obtained. Last, the four ARV immunosensors were used to detect ARV. The results showed that the ARV immunosensors immobilized via Glu, EDC/NHS, direct incubation or CH showed detection limits of 10 0.63 EID 50  mL −1 , 10 0.48 EID 50  mL −1 , 10 0.37 EID 50  mL −1 and 10 0.46 EID 50  mL −1 ARV (S/N = 3) and quantification limits of 10 1.15 EID 50  mL −1 , and 10 1.00 EID 50  mL −1 , 10 0.89 EID 50  mL −1 and 10 0.98 EID 50  mL −1 ARV (S/N = 10), respectively, while the linear range of the immunosensor immobilized via CH (0–10 5.82 EID 50  mL −1 ARV) was 10 times broader than that of the immunosensor immobilized via direct incubation (0–10 4.82 EID 50  mL −1 ARV) and 100 times broader than those of the immunosensors immobilized via Glu (0–10 3.82 EID 50  mL −1 ARV) or EDC/NHS (0–10 3.82 EID 50  mL −1 ARV). And the four immunosensors showed excellent selectivity, reproducibility and stability.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-26768-w</identifier><identifier>PMID: 36575248</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/250 ; 631/92 ; Antibodies ; Biosensing Techniques - methods ; Bovine serum albumin ; Carbodiimide ; Chitosan ; Detection limits ; Electrochemical Techniques - methods ; Electrodes ; Fabrication ; Gold ; Humanities and Social Sciences ; Immobilization ; Immunoassay - methods ; Immunosensors ; Incubation ; Metal Nanoparticles ; Monoclonal antibodies ; multidisciplinary ; Nanocomposites ; Nanoparticles ; Reproducibility of Results ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2022-12, Vol.12 (1), p.22444-11, Article 22444</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-4c3bfaa0eee56f78a2935ae245a63d5c975a367bf5810dc070dd86a6209daf7a3</citedby><cites>FETCH-LOGICAL-c540t-4c3bfaa0eee56f78a2935ae245a63d5c975a367bf5810dc070dd86a6209daf7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2758461149/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2758461149?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36575248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Jiaoling</creatorcontrib><creatorcontrib>Xie, Zhixun</creatorcontrib><creatorcontrib>Xie, Liji</creatorcontrib><creatorcontrib>Luo, Sisi</creatorcontrib><creatorcontrib>Zeng, Tingting</creatorcontrib><creatorcontrib>Zhang, Yanfang</creatorcontrib><creatorcontrib>Zhang, Minxiu</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Wei, You</creatorcontrib><creatorcontrib>Fan, Qing</creatorcontrib><creatorcontrib>Xie, Zhiqin</creatorcontrib><creatorcontrib>Deng, Xianwen</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><title>Explore how immobilization strategies affected immunosensor performance by comparing four methods for antibody immobilization on electrode surfaces</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Among the common methods used for antibody immobilization on electrode surfaces, which is the best available option for immunosensor fabrication? To answer this question, we first used graphene-chitosan-Au/Pt nanoparticle (G-Chi-Au/PtNP) nanocomposites to modify a gold electrode (GE). Second, avian reovirus monoclonal antibody (ARV/MAb) was immobilized on the GE surface by using four common methods, which included glutaraldehyde (Glu), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/ N -hydroxysuccinimide (EDC/NHS), direct incubation or cysteamine hydrochloride (CH). Third, the electrodes were incubated with bovine serum albumin, four different avian reovirus (ARV) immunosensors were obtained. Last, the four ARV immunosensors were used to detect ARV. The results showed that the ARV immunosensors immobilized via Glu, EDC/NHS, direct incubation or CH showed detection limits of 10 0.63 EID 50  mL −1 , 10 0.48 EID 50  mL −1 , 10 0.37 EID 50  mL −1 and 10 0.46 EID 50  mL −1 ARV (S/N = 3) and quantification limits of 10 1.15 EID 50  mL −1 , and 10 1.00 EID 50  mL −1 , 10 0.89 EID 50  mL −1 and 10 0.98 EID 50  mL −1 ARV (S/N = 10), respectively, while the linear range of the immunosensor immobilized via CH (0–10 5.82 EID 50  mL −1 ARV) was 10 times broader than that of the immunosensor immobilized via direct incubation (0–10 4.82 EID 50  mL −1 ARV) and 100 times broader than those of the immunosensors immobilized via Glu (0–10 3.82 EID 50  mL −1 ARV) or EDC/NHS (0–10 3.82 EID 50  mL −1 ARV). And the four immunosensors showed excellent selectivity, reproducibility and stability.</description><subject>631/250</subject><subject>631/92</subject><subject>Antibodies</subject><subject>Biosensing Techniques - methods</subject><subject>Bovine serum albumin</subject><subject>Carbodiimide</subject><subject>Chitosan</subject><subject>Detection limits</subject><subject>Electrochemical Techniques - methods</subject><subject>Electrodes</subject><subject>Fabrication</subject><subject>Gold</subject><subject>Humanities and Social Sciences</subject><subject>Immobilization</subject><subject>Immunoassay - methods</subject><subject>Immunosensors</subject><subject>Incubation</subject><subject>Metal Nanoparticles</subject><subject>Monoclonal antibodies</subject><subject>multidisciplinary</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Reproducibility of Results</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1DAUhiMEolXpC7BAlliHOr4l3iChqtBKldjA2jqxj2c8SuJgZxiG1-CF8XRKaVlgWfLtP9-xj_-qet3Qdw3l3UUWjdRdTRmrmWpVV--eVaeMClkzztjzR_OT6jznDS1NMi0a_bI64Uq2konutPp19WMeYkKyjjsSxjH2YQg_YQlxInlJsOAqYCbgPdoF3UGynWLGKcdEZkw-phEmi6TfExvHGVKYVsTHbSIjLuvoclkkAtMS-uj2_6YoHYdCTtEhydvkwWJ-Vb3wMGQ8vx_Pqq8fr75cXte3nz_dXH64ra0UdKmF5b0HoIgolW87YJpLQCYkKO6k1a0Ertrey66hztKWOtcpUIxqB74FflbdHLkuwsbMKYyQ9iZCMHcbMa0MpCXYAQ0o6mnjLTSUCVs4umeoFG-E1IoCL6z3R9a87Ud0FqdSvOEJ9OnJFNZmFb8b3WrRdroA3t4DUvy2xbyYTSniVN5vWCs7oZpGHFTsqLIp5pzQP2RoqDn4whx9YYovzJ0vzK4EvXl8t4eQPy4oAn4U5PnwfZj-5v4P9jfuMMnP</recordid><startdate>20221223</startdate><enddate>20221223</enddate><creator>Huang, Jiaoling</creator><creator>Xie, Zhixun</creator><creator>Xie, Liji</creator><creator>Luo, Sisi</creator><creator>Zeng, Tingting</creator><creator>Zhang, Yanfang</creator><creator>Zhang, Minxiu</creator><creator>Wang, Sheng</creator><creator>Li, Meng</creator><creator>Wei, You</creator><creator>Fan, Qing</creator><creator>Xie, Zhiqin</creator><creator>Deng, Xianwen</creator><creator>Li, Dan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20221223</creationdate><title>Explore how immobilization strategies affected immunosensor performance by comparing four methods for antibody immobilization on electrode surfaces</title><author>Huang, Jiaoling ; Xie, Zhixun ; Xie, Liji ; Luo, Sisi ; Zeng, Tingting ; Zhang, Yanfang ; Zhang, Minxiu ; Wang, Sheng ; Li, Meng ; Wei, You ; Fan, Qing ; Xie, Zhiqin ; Deng, Xianwen ; Li, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-4c3bfaa0eee56f78a2935ae245a63d5c975a367bf5810dc070dd86a6209daf7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/250</topic><topic>631/92</topic><topic>Antibodies</topic><topic>Biosensing Techniques - methods</topic><topic>Bovine serum albumin</topic><topic>Carbodiimide</topic><topic>Chitosan</topic><topic>Detection limits</topic><topic>Electrochemical Techniques - methods</topic><topic>Electrodes</topic><topic>Fabrication</topic><topic>Gold</topic><topic>Humanities and Social Sciences</topic><topic>Immobilization</topic><topic>Immunoassay - methods</topic><topic>Immunosensors</topic><topic>Incubation</topic><topic>Metal Nanoparticles</topic><topic>Monoclonal antibodies</topic><topic>multidisciplinary</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Reproducibility of Results</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jiaoling</creatorcontrib><creatorcontrib>Xie, Zhixun</creatorcontrib><creatorcontrib>Xie, Liji</creatorcontrib><creatorcontrib>Luo, Sisi</creatorcontrib><creatorcontrib>Zeng, Tingting</creatorcontrib><creatorcontrib>Zhang, Yanfang</creatorcontrib><creatorcontrib>Zhang, Minxiu</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Wei, You</creatorcontrib><creatorcontrib>Fan, Qing</creatorcontrib><creatorcontrib>Xie, Zhiqin</creatorcontrib><creatorcontrib>Deng, Xianwen</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jiaoling</au><au>Xie, Zhixun</au><au>Xie, Liji</au><au>Luo, Sisi</au><au>Zeng, Tingting</au><au>Zhang, Yanfang</au><au>Zhang, Minxiu</au><au>Wang, Sheng</au><au>Li, Meng</au><au>Wei, You</au><au>Fan, Qing</au><au>Xie, Zhiqin</au><au>Deng, Xianwen</au><au>Li, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explore how immobilization strategies affected immunosensor performance by comparing four methods for antibody immobilization on electrode surfaces</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2022-12-23</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>22444</spage><epage>11</epage><pages>22444-11</pages><artnum>22444</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Among the common methods used for antibody immobilization on electrode surfaces, which is the best available option for immunosensor fabrication? To answer this question, we first used graphene-chitosan-Au/Pt nanoparticle (G-Chi-Au/PtNP) nanocomposites to modify a gold electrode (GE). Second, avian reovirus monoclonal antibody (ARV/MAb) was immobilized on the GE surface by using four common methods, which included glutaraldehyde (Glu), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/ N -hydroxysuccinimide (EDC/NHS), direct incubation or cysteamine hydrochloride (CH). Third, the electrodes were incubated with bovine serum albumin, four different avian reovirus (ARV) immunosensors were obtained. Last, the four ARV immunosensors were used to detect ARV. The results showed that the ARV immunosensors immobilized via Glu, EDC/NHS, direct incubation or CH showed detection limits of 10 0.63 EID 50  mL −1 , 10 0.48 EID 50  mL −1 , 10 0.37 EID 50  mL −1 and 10 0.46 EID 50  mL −1 ARV (S/N = 3) and quantification limits of 10 1.15 EID 50  mL −1 , and 10 1.00 EID 50  mL −1 , 10 0.89 EID 50  mL −1 and 10 0.98 EID 50  mL −1 ARV (S/N = 10), respectively, while the linear range of the immunosensor immobilized via CH (0–10 5.82 EID 50  mL −1 ARV) was 10 times broader than that of the immunosensor immobilized via direct incubation (0–10 4.82 EID 50  mL −1 ARV) and 100 times broader than those of the immunosensors immobilized via Glu (0–10 3.82 EID 50  mL −1 ARV) or EDC/NHS (0–10 3.82 EID 50  mL −1 ARV). And the four immunosensors showed excellent selectivity, reproducibility and stability.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36575248</pmid><doi>10.1038/s41598-022-26768-w</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2022-12, Vol.12 (1), p.22444-11, Article 22444
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a60f01fca1024cdd89b2e663145960a3
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/250
631/92
Antibodies
Biosensing Techniques - methods
Bovine serum albumin
Carbodiimide
Chitosan
Detection limits
Electrochemical Techniques - methods
Electrodes
Fabrication
Gold
Humanities and Social Sciences
Immobilization
Immunoassay - methods
Immunosensors
Incubation
Metal Nanoparticles
Monoclonal antibodies
multidisciplinary
Nanocomposites
Nanoparticles
Reproducibility of Results
Science
Science (multidisciplinary)
title Explore how immobilization strategies affected immunosensor performance by comparing four methods for antibody immobilization on electrode surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explore%20how%20immobilization%20strategies%20affected%20immunosensor%20performance%20by%20comparing%20four%20methods%20for%20antibody%20immobilization%20on%20electrode%20surfaces&rft.jtitle=Scientific%20reports&rft.au=Huang,%20Jiaoling&rft.date=2022-12-23&rft.volume=12&rft.issue=1&rft.spage=22444&rft.epage=11&rft.pages=22444-11&rft.artnum=22444&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-26768-w&rft_dat=%3Cproquest_doaj_%3E2758461149%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-4c3bfaa0eee56f78a2935ae245a63d5c975a367bf5810dc070dd86a6209daf7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2758461149&rft_id=info:pmid/36575248&rfr_iscdi=true