Loading…

Predicting CO2 Minimum Miscibility Pressure (MMP) Using Alternating Conditional Expectation (ACE) Algorithm

Miscible gas injection is one of the most important enhanced oil recovery (EOR) approaches for increasing oil recovery. Due to the massive cost associated with this approach a high degree of accuracy is required for predicting the outcome of the process. Such accuracy includes, the preliminary scree...

Full description

Saved in:
Bibliographic Details
Published in:Oil & gas science and technology 2015-11, Vol.70 (6), p.967-982
Main Authors: Alomair, O., Malallah, A., Elsharkawy, A., Iqbal, M.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 982
container_issue 6
container_start_page 967
container_title Oil & gas science and technology
container_volume 70
creator Alomair, O.
Malallah, A.
Elsharkawy, A.
Iqbal, M.
description Miscible gas injection is one of the most important enhanced oil recovery (EOR) approaches for increasing oil recovery. Due to the massive cost associated with this approach a high degree of accuracy is required for predicting the outcome of the process. Such accuracy includes, the preliminary screening parameters for gas miscible displacement; the “Minimum Miscibility Pressure” (MMP) and the availability of the gas. All conventional and stat-of-art MMP measurement methods are either time consuming or decidedly cost demanding processes. Therefore, in order to address the immediate industry demands a nonparametric approach, Alternating Conditional Expectation (ACE), is used in this study to estimate MMP. This algorithm Breiman and Friedman [Brieman L., Friedman J.H. (1985) J. Am. Stat. Assoc. 80, 391, 580-619]estimates the transformations of a set of predictors (here C1, C2, C3, C4, C5, C6, C7+, CO2, H2S, N2, Mw5+, Mw7+ and T) and a response (here MMP) that produce the maximum linear effect between these transformed variables. One hundred thirteen MMP data points are considered both from the relevant published literature and the experimental work. Five MMP measurements for Kuwaiti Oil are included as part of the testing data. The proposed model is validated using detailed statistical analysis; a reasonably good value of correlation coefficient 0.956 is obtained as compare to the existing correlations. Similarly, standard deviation and average absolute error values are at the lowest as 139 psia (8.55 bar) and 4.68% respectively. Hence, it reveals that the results are more reliable than the existing correlations for pure CO2 injection to enhance oil recovery. In addition to its accuracy, the ACE approach is more powerful, quick and can handle a huge data. L’injection de gaz miscibles est une des méthodes les plus utilisées pour améliorer la récupération d’hydrocarbures (Enhanced Oil Recovery, EOR). En raison du coût important de cette technique, un haut degré de précision est requis pour prédire le processus. Une telle précision comprend les paramètres de dépistage préliminaires pour le déplacement de gaz miscible, la pression minimale de miscibilité (Minimum Miscibility Pressure, MMP) et de la disponibilité du gaz. Toutes les méthodes de mesure du MMP conventionnelles sont des processus consommateurs de temps requérant de ce fait des coûts importants. Par conséquent, afin de répondre aux demandes de réponses rapides du secteur, une approche non paramétrique
doi_str_mv 10.2516/ogst/2012097
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a6280238aa4b4a779eaa656af58cb357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a6280238aa4b4a779eaa656af58cb357</doaj_id><sourcerecordid>2058556193</sourcerecordid><originalsourceid>FETCH-LOGICAL-d321t-3f5cec5d1f206d4dedbc522c7c8698302259235524b0dc8ed95aa89af71ef4923</originalsourceid><addsrcrecordid>eNpVkE1rGzEQhpfQQkKaW3_AQi_xYRN97GilozFuHbCJAw09illJ6yhZ77qSXJJ_H7lbCjnNzDvPPIcpiq-U3DCg4nbcxXTLCGVENWfFBVXAK0ml-pR7puqqrhs4L65i9C2pgVOQil8UL9vgrDfJD7tycc_KjR_8_rjPNRrf-t6ntzIjMR6DK683m-2sfIwneN4nFwacDsfB-uTHAfty-XpwJuFpKq_ni-Usk7sx-PS0_1J87rCP7upfvSwevy9_LlbV-v7H3WK-rixnNFW8A-MMWNoxImxtnW0NMGYaI4WSnDAGinEAVrfEGumsAkSpsGuo6-q8uizuJq8d8Vkfgt9jeNMjev03GMNOY0je9E6jYJIwLhHrtsamUQ5RgMAOpGk5NNk1m1xP2H9QreZrfcoIVZxyBX9oZr9N7CGMv48uJv08HvOP-qgZAQkgMpupaqJ8TO71vxPDixYNb0BL8kvz7cNGrcRWC_4OyqOP4A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2058556193</pqid></control><display><type>article</type><title>Predicting CO2 Minimum Miscibility Pressure (MMP) Using Alternating Conditional Expectation (ACE) Algorithm</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Alomair, O. ; Malallah, A. ; Elsharkawy, A. ; Iqbal, M.</creator><creatorcontrib>Alomair, O. ; Malallah, A. ; Elsharkawy, A. ; Iqbal, M.</creatorcontrib><description>Miscible gas injection is one of the most important enhanced oil recovery (EOR) approaches for increasing oil recovery. Due to the massive cost associated with this approach a high degree of accuracy is required for predicting the outcome of the process. Such accuracy includes, the preliminary screening parameters for gas miscible displacement; the “Minimum Miscibility Pressure” (MMP) and the availability of the gas. All conventional and stat-of-art MMP measurement methods are either time consuming or decidedly cost demanding processes. Therefore, in order to address the immediate industry demands a nonparametric approach, Alternating Conditional Expectation (ACE), is used in this study to estimate MMP. This algorithm Breiman and Friedman [Brieman L., Friedman J.H. (1985) J. Am. Stat. Assoc. 80, 391, 580-619]estimates the transformations of a set of predictors (here C1, C2, C3, C4, C5, C6, C7+, CO2, H2S, N2, Mw5+, Mw7+ and T) and a response (here MMP) that produce the maximum linear effect between these transformed variables. One hundred thirteen MMP data points are considered both from the relevant published literature and the experimental work. Five MMP measurements for Kuwaiti Oil are included as part of the testing data. The proposed model is validated using detailed statistical analysis; a reasonably good value of correlation coefficient 0.956 is obtained as compare to the existing correlations. Similarly, standard deviation and average absolute error values are at the lowest as 139 psia (8.55 bar) and 4.68% respectively. Hence, it reveals that the results are more reliable than the existing correlations for pure CO2 injection to enhance oil recovery. In addition to its accuracy, the ACE approach is more powerful, quick and can handle a huge data. L’injection de gaz miscibles est une des méthodes les plus utilisées pour améliorer la récupération d’hydrocarbures (Enhanced Oil Recovery, EOR). En raison du coût important de cette technique, un haut degré de précision est requis pour prédire le processus. Une telle précision comprend les paramètres de dépistage préliminaires pour le déplacement de gaz miscible, la pression minimale de miscibilité (Minimum Miscibility Pressure, MMP) et de la disponibilité du gaz. Toutes les méthodes de mesure du MMP conventionnelles sont des processus consommateurs de temps requérant de ce fait des coûts importants. Par conséquent, afin de répondre aux demandes de réponses rapides du secteur, une approche non paramétrique basée sur l’algorithme ACE (Alternating Conditional Expectation) due à Brieman et Friedman [Brieman L., Friedman J.H. (1985) J. Am. Stat. Assoc. 80, 391, 580-619], est utilisée dans cette étude pour estimer les MMP. Cet algorithme recherche les transformations optimales d’un ensemble de facteurs prédictifs (ici C1, C2, C3, C4, C5, C6, C7+, CO2, H2S, N2, Mw5+, Mw7+ et T) et d’une réponse (ici MMP) à modéliser qui produisent le maximum de corrélations entre les facteurs et la réponse transformée. Cent treize points de données MMP sont considérés, issus à la fois de la littérature et de travaux expérimentaux. Cinq mesures MMP correspondant à un champ pétrolier koweïtien sont incluses dans les données de test. Le modèle proposé est validé en utilisant une analyse statistique détaillée ; un coefficient de corrélation de 0,956 est obtenu par comparaison avec les corrélations existantes. De même, l’écart type et la moyenne des valeurs d’erreurs absolues sont minimales : respectivement 139 psia (8,55 bar) et 4,68 %. Par conséquent, il s’avère que les résultats sont plus fiables que les corrélations existantes pour l’injection de CO2 pur pour améliorer la récupération du pétrole. En plus de sa précision, l’approche ACE est plus puissante, rapide et peut gérer un ensemble de données énormes.</description><identifier>ISSN: 1294-4475</identifier><identifier>EISSN: 1953-8189</identifier><identifier>EISSN: 2804-7699</identifier><identifier>DOI: 10.2516/ogst/2012097</identifier><language>eng</language><publisher>Paris: Technip</publisher><subject>Accuracy ; Algorithms ; Carbon dioxide ; Correlation coefficient ; Correlation coefficients ; Data ; Data points ; Enhanced oil recovery ; Gas injection ; Hydrogen sulfide ; Injection ; Mathematical models ; Measurement methods ; Miscibility ; Natural gas ; Oil recovery ; Physics ; Pressure ; Recovery ; Statistical analysis ; Statistical methods ; Transformations</subject><ispartof>Oil &amp; gas science and technology, 2015-11, Vol.70 (6), p.967-982</ispartof><rights>2013. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2058556193?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,25734,27905,27906,36993,44571</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01931395$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alomair, O.</creatorcontrib><creatorcontrib>Malallah, A.</creatorcontrib><creatorcontrib>Elsharkawy, A.</creatorcontrib><creatorcontrib>Iqbal, M.</creatorcontrib><title>Predicting CO2 Minimum Miscibility Pressure (MMP) Using Alternating Conditional Expectation (ACE) Algorithm</title><title>Oil &amp; gas science and technology</title><description>Miscible gas injection is one of the most important enhanced oil recovery (EOR) approaches for increasing oil recovery. Due to the massive cost associated with this approach a high degree of accuracy is required for predicting the outcome of the process. Such accuracy includes, the preliminary screening parameters for gas miscible displacement; the “Minimum Miscibility Pressure” (MMP) and the availability of the gas. All conventional and stat-of-art MMP measurement methods are either time consuming or decidedly cost demanding processes. Therefore, in order to address the immediate industry demands a nonparametric approach, Alternating Conditional Expectation (ACE), is used in this study to estimate MMP. This algorithm Breiman and Friedman [Brieman L., Friedman J.H. (1985) J. Am. Stat. Assoc. 80, 391, 580-619]estimates the transformations of a set of predictors (here C1, C2, C3, C4, C5, C6, C7+, CO2, H2S, N2, Mw5+, Mw7+ and T) and a response (here MMP) that produce the maximum linear effect between these transformed variables. One hundred thirteen MMP data points are considered both from the relevant published literature and the experimental work. Five MMP measurements for Kuwaiti Oil are included as part of the testing data. The proposed model is validated using detailed statistical analysis; a reasonably good value of correlation coefficient 0.956 is obtained as compare to the existing correlations. Similarly, standard deviation and average absolute error values are at the lowest as 139 psia (8.55 bar) and 4.68% respectively. Hence, it reveals that the results are more reliable than the existing correlations for pure CO2 injection to enhance oil recovery. In addition to its accuracy, the ACE approach is more powerful, quick and can handle a huge data. L’injection de gaz miscibles est une des méthodes les plus utilisées pour améliorer la récupération d’hydrocarbures (Enhanced Oil Recovery, EOR). En raison du coût important de cette technique, un haut degré de précision est requis pour prédire le processus. Une telle précision comprend les paramètres de dépistage préliminaires pour le déplacement de gaz miscible, la pression minimale de miscibilité (Minimum Miscibility Pressure, MMP) et de la disponibilité du gaz. Toutes les méthodes de mesure du MMP conventionnelles sont des processus consommateurs de temps requérant de ce fait des coûts importants. Par conséquent, afin de répondre aux demandes de réponses rapides du secteur, une approche non paramétrique basée sur l’algorithme ACE (Alternating Conditional Expectation) due à Brieman et Friedman [Brieman L., Friedman J.H. (1985) J. Am. Stat. Assoc. 80, 391, 580-619], est utilisée dans cette étude pour estimer les MMP. Cet algorithme recherche les transformations optimales d’un ensemble de facteurs prédictifs (ici C1, C2, C3, C4, C5, C6, C7+, CO2, H2S, N2, Mw5+, Mw7+ et T) et d’une réponse (ici MMP) à modéliser qui produisent le maximum de corrélations entre les facteurs et la réponse transformée. Cent treize points de données MMP sont considérés, issus à la fois de la littérature et de travaux expérimentaux. Cinq mesures MMP correspondant à un champ pétrolier koweïtien sont incluses dans les données de test. Le modèle proposé est validé en utilisant une analyse statistique détaillée ; un coefficient de corrélation de 0,956 est obtenu par comparaison avec les corrélations existantes. De même, l’écart type et la moyenne des valeurs d’erreurs absolues sont minimales : respectivement 139 psia (8,55 bar) et 4,68 %. Par conséquent, il s’avère que les résultats sont plus fiables que les corrélations existantes pour l’injection de CO2 pur pour améliorer la récupération du pétrole. En plus de sa précision, l’approche ACE est plus puissante, rapide et peut gérer un ensemble de données énormes.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Carbon dioxide</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Data</subject><subject>Data points</subject><subject>Enhanced oil recovery</subject><subject>Gas injection</subject><subject>Hydrogen sulfide</subject><subject>Injection</subject><subject>Mathematical models</subject><subject>Measurement methods</subject><subject>Miscibility</subject><subject>Natural gas</subject><subject>Oil recovery</subject><subject>Physics</subject><subject>Pressure</subject><subject>Recovery</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Transformations</subject><issn>1294-4475</issn><issn>1953-8189</issn><issn>2804-7699</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkE1rGzEQhpfQQkKaW3_AQi_xYRN97GilozFuHbCJAw09illJ6yhZ77qSXJJ_H7lbCjnNzDvPPIcpiq-U3DCg4nbcxXTLCGVENWfFBVXAK0ml-pR7puqqrhs4L65i9C2pgVOQil8UL9vgrDfJD7tycc_KjR_8_rjPNRrf-t6ntzIjMR6DK683m-2sfIwneN4nFwacDsfB-uTHAfty-XpwJuFpKq_ni-Usk7sx-PS0_1J87rCP7upfvSwevy9_LlbV-v7H3WK-rixnNFW8A-MMWNoxImxtnW0NMGYaI4WSnDAGinEAVrfEGumsAkSpsGuo6-q8uizuJq8d8Vkfgt9jeNMjev03GMNOY0je9E6jYJIwLhHrtsamUQ5RgMAOpGk5NNk1m1xP2H9QreZrfcoIVZxyBX9oZr9N7CGMv48uJv08HvOP-qgZAQkgMpupaqJ8TO71vxPDixYNb0BL8kvz7cNGrcRWC_4OyqOP4A</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Alomair, O.</creator><creator>Malallah, A.</creator><creator>Elsharkawy, A.</creator><creator>Iqbal, M.</creator><general>Technip</general><general>EDP Sciences</general><general>Institut Français du Pétrole (IFP)</general><scope>BSCLL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope></search><sort><creationdate>201511</creationdate><title>Predicting CO2 Minimum Miscibility Pressure (MMP) Using Alternating Conditional Expectation (ACE) Algorithm</title><author>Alomair, O. ; Malallah, A. ; Elsharkawy, A. ; Iqbal, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d321t-3f5cec5d1f206d4dedbc522c7c8698302259235524b0dc8ed95aa89af71ef4923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Carbon dioxide</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Data</topic><topic>Data points</topic><topic>Enhanced oil recovery</topic><topic>Gas injection</topic><topic>Hydrogen sulfide</topic><topic>Injection</topic><topic>Mathematical models</topic><topic>Measurement methods</topic><topic>Miscibility</topic><topic>Natural gas</topic><topic>Oil recovery</topic><topic>Physics</topic><topic>Pressure</topic><topic>Recovery</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alomair, O.</creatorcontrib><creatorcontrib>Malallah, A.</creatorcontrib><creatorcontrib>Elsharkawy, A.</creatorcontrib><creatorcontrib>Iqbal, M.</creatorcontrib><collection>Istex</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Oil &amp; gas science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alomair, O.</au><au>Malallah, A.</au><au>Elsharkawy, A.</au><au>Iqbal, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting CO2 Minimum Miscibility Pressure (MMP) Using Alternating Conditional Expectation (ACE) Algorithm</atitle><jtitle>Oil &amp; gas science and technology</jtitle><date>2015-11</date><risdate>2015</risdate><volume>70</volume><issue>6</issue><spage>967</spage><epage>982</epage><pages>967-982</pages><issn>1294-4475</issn><eissn>1953-8189</eissn><eissn>2804-7699</eissn><abstract>Miscible gas injection is one of the most important enhanced oil recovery (EOR) approaches for increasing oil recovery. Due to the massive cost associated with this approach a high degree of accuracy is required for predicting the outcome of the process. Such accuracy includes, the preliminary screening parameters for gas miscible displacement; the “Minimum Miscibility Pressure” (MMP) and the availability of the gas. All conventional and stat-of-art MMP measurement methods are either time consuming or decidedly cost demanding processes. Therefore, in order to address the immediate industry demands a nonparametric approach, Alternating Conditional Expectation (ACE), is used in this study to estimate MMP. This algorithm Breiman and Friedman [Brieman L., Friedman J.H. (1985) J. Am. Stat. Assoc. 80, 391, 580-619]estimates the transformations of a set of predictors (here C1, C2, C3, C4, C5, C6, C7+, CO2, H2S, N2, Mw5+, Mw7+ and T) and a response (here MMP) that produce the maximum linear effect between these transformed variables. One hundred thirteen MMP data points are considered both from the relevant published literature and the experimental work. Five MMP measurements for Kuwaiti Oil are included as part of the testing data. The proposed model is validated using detailed statistical analysis; a reasonably good value of correlation coefficient 0.956 is obtained as compare to the existing correlations. Similarly, standard deviation and average absolute error values are at the lowest as 139 psia (8.55 bar) and 4.68% respectively. Hence, it reveals that the results are more reliable than the existing correlations for pure CO2 injection to enhance oil recovery. In addition to its accuracy, the ACE approach is more powerful, quick and can handle a huge data. L’injection de gaz miscibles est une des méthodes les plus utilisées pour améliorer la récupération d’hydrocarbures (Enhanced Oil Recovery, EOR). En raison du coût important de cette technique, un haut degré de précision est requis pour prédire le processus. Une telle précision comprend les paramètres de dépistage préliminaires pour le déplacement de gaz miscible, la pression minimale de miscibilité (Minimum Miscibility Pressure, MMP) et de la disponibilité du gaz. Toutes les méthodes de mesure du MMP conventionnelles sont des processus consommateurs de temps requérant de ce fait des coûts importants. Par conséquent, afin de répondre aux demandes de réponses rapides du secteur, une approche non paramétrique basée sur l’algorithme ACE (Alternating Conditional Expectation) due à Brieman et Friedman [Brieman L., Friedman J.H. (1985) J. Am. Stat. Assoc. 80, 391, 580-619], est utilisée dans cette étude pour estimer les MMP. Cet algorithme recherche les transformations optimales d’un ensemble de facteurs prédictifs (ici C1, C2, C3, C4, C5, C6, C7+, CO2, H2S, N2, Mw5+, Mw7+ et T) et d’une réponse (ici MMP) à modéliser qui produisent le maximum de corrélations entre les facteurs et la réponse transformée. Cent treize points de données MMP sont considérés, issus à la fois de la littérature et de travaux expérimentaux. Cinq mesures MMP correspondant à un champ pétrolier koweïtien sont incluses dans les données de test. Le modèle proposé est validé en utilisant une analyse statistique détaillée ; un coefficient de corrélation de 0,956 est obtenu par comparaison avec les corrélations existantes. De même, l’écart type et la moyenne des valeurs d’erreurs absolues sont minimales : respectivement 139 psia (8,55 bar) et 4,68 %. Par conséquent, il s’avère que les résultats sont plus fiables que les corrélations existantes pour l’injection de CO2 pur pour améliorer la récupération du pétrole. En plus de sa précision, l’approche ACE est plus puissante, rapide et peut gérer un ensemble de données énormes.</abstract><cop>Paris</cop><pub>Technip</pub><doi>10.2516/ogst/2012097</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1294-4475
ispartof Oil & gas science and technology, 2015-11, Vol.70 (6), p.967-982
issn 1294-4475
1953-8189
2804-7699
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a6280238aa4b4a779eaa656af58cb357
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Accuracy
Algorithms
Carbon dioxide
Correlation coefficient
Correlation coefficients
Data
Data points
Enhanced oil recovery
Gas injection
Hydrogen sulfide
Injection
Mathematical models
Measurement methods
Miscibility
Natural gas
Oil recovery
Physics
Pressure
Recovery
Statistical analysis
Statistical methods
Transformations
title Predicting CO2 Minimum Miscibility Pressure (MMP) Using Alternating Conditional Expectation (ACE) Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A21%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20CO2%20Minimum%20Miscibility%20Pressure%20(MMP)%20Using%20Alternating%20Conditional%20Expectation%20(ACE)%20Algorithm&rft.jtitle=Oil%20&%20gas%20science%20and%20technology&rft.au=Alomair,%20O.&rft.date=2015-11&rft.volume=70&rft.issue=6&rft.spage=967&rft.epage=982&rft.pages=967-982&rft.issn=1294-4475&rft.eissn=1953-8189&rft_id=info:doi/10.2516/ogst/2012097&rft_dat=%3Cproquest_doaj_%3E2058556193%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d321t-3f5cec5d1f206d4dedbc522c7c8698302259235524b0dc8ed95aa89af71ef4923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2058556193&rft_id=info:pmid/&rfr_iscdi=true