Loading…

Effects of Whole-Body Vibration Training with Different Body Positions and Amplitudes on Lower Limb Muscle Activity in Middle-Aged and Older Women

Purpose The present study was designed to investigate the electromyographic (EMG) response in leg muscles to whole-body vibration while using different body positions and vibration amplitudes. Methods: An experimental study with repeated measures design involved a group of community-dwelling middle-...

Full description

Saved in:
Bibliographic Details
Published in:Dose-response 2022-07, Vol.20 (3), p.15593258221112960-15593258221112960
Main Authors: Liu, Yuxiu, Fan, Yongzhao, Chen, Xiaohong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose The present study was designed to investigate the electromyographic (EMG) response in leg muscles to whole-body vibration while using different body positions and vibration amplitudes. Methods: An experimental study with repeated measures design involved a group of community-dwelling middle-aged and older women (n = 15; mean age=60.8 ± 4.18 years). Muscle activity of the gluteus maximus (GM), rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF), and gastrocnemius (GS) was measured by surface electromyography, which participants were performing three different body positions during three WBV amplitudes. The body positions included static semi-squat, static semi-squat with elastic band loading, and dynamic semi-squat. Vibration stimuli tested were 0 mm, 2 mm, and 4 mm amplitude and 30 Hz frequencies. And the maximum accelerations produced by vibration stimuli with amplitudes of 2 mm and 4 mm are approximately 1.83 g and 3.17 g. Results: Significantly greater muscle activity was recorded in VL, BF, and GS. When WBV was applied to training, compared with the same training without WBV (P < .05). There were significant main effects of body positions on EMGrms for the GM, RF, and VM (P < .05). Compared to static semi-squat, static semi-squat with elastic band significantly increased the EMGrms of GM, and dynamic semi-squat significantly increased the EMGrms of GM, RF and VM (P < .05). And there were significant main effects of amplitudes on EMGrms for the GM, RF, and VM (P < .05). The EMGrms of the VL, BF, and GS at 4 mm were significantly higher than 0 mm, and the EMGrms of the VL and BF at 4 mm were significantly higher than 2 mm. There was no significant body interaction between body positions and amplitudes (P > .05). Conclusions: The EMG amplitudes of most leg muscles tested were significantly greater during WBV exposure than in the no-WBV condition. The dynamic semi-squat 4 mm whole-body vibration training is recommended for middle-aged and older women to improve lower limb muscle strength and function.
ISSN:1559-3258
1559-3258
DOI:10.1177/15593258221112960