Loading…
Glial type specific regulation of CNS angiogenesis by HIFα-activated different signaling pathways
The mechanisms by which oligodendroglia modulate CNS angiogenesis remain elusive. Previous in vitro data suggest that oligodendroglia regulate CNS endothelial cell proliferation and blood vessel formation through hypoxia inducible factor alpha (HIFα)-activated Wnt (but not VEGF) signaling. Using in...
Saved in:
Published in: | Nature communications 2020-04, Vol.11 (1), p.2027-2027, Article 2027 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-5fb3c5341501ee4dcb52661705663ae7ff0a9c1fc3597751021303b40308a9293 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-5fb3c5341501ee4dcb52661705663ae7ff0a9c1fc3597751021303b40308a9293 |
container_end_page | 2027 |
container_issue | 1 |
container_start_page | 2027 |
container_title | Nature communications |
container_volume | 11 |
creator | Zhang, Sheng Kim, Bokyung Zhu, Xiaoqing Gui, Xuehong Wang, Yan Lan, Zhaohui Prabhu, Preeti Fond, Kenneth Wang, Aijun Guo, Fuzheng |
description | The mechanisms by which oligodendroglia modulate CNS angiogenesis remain elusive. Previous in vitro data suggest that oligodendroglia regulate CNS endothelial cell proliferation and blood vessel formation through hypoxia inducible factor alpha (HIFα)-activated Wnt (but not VEGF) signaling. Using in vivo genetic models, we show that HIFα in oligodendroglia is necessary and sufficient for angiogenesis independent of CNS regions. At the molecular level, HIFα stabilization in oligodendroglia does not perturb Wnt signaling but rather activates VEGF. At the functional level, genetically blocking oligodendroglia-derived VEGF but not Wnt significantly decreases oligodendroglial HIFα-regulated CNS angiogenesis. Blocking astroglia-derived Wnt signaling reduces astroglial HIFα-regulated CNS angiogenesis. Together, our in vivo data demonstrate that oligodendroglial HIFα regulates CNS angiogenesis through Wnt-independent and VEGF-dependent signaling. These findings suggest an alternative mechanistic understanding of CNS angiogenesis by postnatal glial cells and unveil a glial cell type-dependent HIFα-Wnt axis in regulating CNS vessel formation.
In the central nervous system, the maturation of glial cells is temporally and functionally coupled with that of the vascular network during postnatal development. Here the authors show that oligodendroglial HIFα regulates CNS angiogenesis through Wnt-independent and VEGF-dependent signaling, while astroglial HIFα participates through Wnt-dependent signaling. |
doi_str_mv | 10.1038/s41467-020-15656-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a65b57afc4f8481493c09c67dabde278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a65b57afc4f8481493c09c67dabde278</doaj_id><sourcerecordid>2394879914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-5fb3c5341501ee4dcb52661705663ae7ff0a9c1fc3597751021303b40308a9293</originalsourceid><addsrcrecordid>eNp9ks1u1DAQgCMEolXpC3BAlrhwCfg3ji9IaEXblSo4AGdr4oxTr7LxYidF-1i8CM9EdlNKywFfbHm--eyxpyheMvqWUVG_y5LJSpeU05KpSlWlfFKccipZyTQXTx-sT4rznDd0HsKwWsrnxYngQnDNzGnRXPYBejLud0jyDl3wwZGE3dTDGOJAoierT18IDF2IHQ6YQybNnlytL379LMGN4RZGbEkbvMeEw0hy6Abow9CRHYw3P2CfXxTPPPQZz-_ms-Lbxcevq6vy-vPlevXhunRK0rFUvhFOCckUZYiydY3iVcU0VVUlALX3FIxj3glltFaMciaoaCQVtAbDjTgr1ou3jbCxuxS2kPY2QrDHjZg6C2kMrkcLlWqUBu-kr2XNpBGOGlfpFpoWua5n1_vFtZuaLbZurixB_0j6ODKEG9vFW6tZzSomZ8GbO0GK3yfMo92G7LDvYcA4ZcuFkbU25oi-_gfdxCnNj7hQinOmDhRfKJdizgn9_WUYtYeOsEtH2Lkj7LEj7CHp1cMy7lP-_P8MiAXIc2joMP09-z_a35r9wS8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394522154</pqid></control><display><type>article</type><title>Glial type specific regulation of CNS angiogenesis by HIFα-activated different signaling pathways</title><source>Open Access: PubMed Central</source><source>Nature</source><source>ProQuest - Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhang, Sheng ; Kim, Bokyung ; Zhu, Xiaoqing ; Gui, Xuehong ; Wang, Yan ; Lan, Zhaohui ; Prabhu, Preeti ; Fond, Kenneth ; Wang, Aijun ; Guo, Fuzheng</creator><creatorcontrib>Zhang, Sheng ; Kim, Bokyung ; Zhu, Xiaoqing ; Gui, Xuehong ; Wang, Yan ; Lan, Zhaohui ; Prabhu, Preeti ; Fond, Kenneth ; Wang, Aijun ; Guo, Fuzheng</creatorcontrib><description>The mechanisms by which oligodendroglia modulate CNS angiogenesis remain elusive. Previous in vitro data suggest that oligodendroglia regulate CNS endothelial cell proliferation and blood vessel formation through hypoxia inducible factor alpha (HIFα)-activated Wnt (but not VEGF) signaling. Using in vivo genetic models, we show that HIFα in oligodendroglia is necessary and sufficient for angiogenesis independent of CNS regions. At the molecular level, HIFα stabilization in oligodendroglia does not perturb Wnt signaling but rather activates VEGF. At the functional level, genetically blocking oligodendroglia-derived VEGF but not Wnt significantly decreases oligodendroglial HIFα-regulated CNS angiogenesis. Blocking astroglia-derived Wnt signaling reduces astroglial HIFα-regulated CNS angiogenesis. Together, our in vivo data demonstrate that oligodendroglial HIFα regulates CNS angiogenesis through Wnt-independent and VEGF-dependent signaling. These findings suggest an alternative mechanistic understanding of CNS angiogenesis by postnatal glial cells and unveil a glial cell type-dependent HIFα-Wnt axis in regulating CNS vessel formation.
In the central nervous system, the maturation of glial cells is temporally and functionally coupled with that of the vascular network during postnatal development. Here the authors show that oligodendroglial HIFα regulates CNS angiogenesis through Wnt-independent and VEGF-dependent signaling, while astroglial HIFα participates through Wnt-dependent signaling.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-15656-4</identifier><identifier>PMID: 32332719</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 14/1 ; 14/32 ; 14/63 ; 38/77 ; 631/136 ; 631/136/16 ; 631/378/368/2430 ; 82/29 ; Angiogenesis ; Animals ; Animals, Newborn ; Astrocytes ; Astrocytes - metabolism ; Blood vessels ; Cell Proliferation ; Cells, Cultured ; Central nervous system ; Endothelial cells ; Endothelial Cells - metabolism ; Female ; Glial cells ; Humanities and Social Sciences ; Hypoxia ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Male ; Mice ; Mice, Knockout ; multidisciplinary ; Neovascularization, Physiologic ; Oligodendrocytes ; Oligodendroglia - metabolism ; Primary Cell Culture ; Prosencephalon - blood supply ; Prosencephalon - cytology ; Science ; Science (multidisciplinary) ; Signaling ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - metabolism ; Wnt protein ; Wnt Signaling Pathway - physiology</subject><ispartof>Nature communications, 2020-04, Vol.11 (1), p.2027-2027, Article 2027</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-5fb3c5341501ee4dcb52661705663ae7ff0a9c1fc3597751021303b40308a9293</citedby><cites>FETCH-LOGICAL-c540t-5fb3c5341501ee4dcb52661705663ae7ff0a9c1fc3597751021303b40308a9293</cites><orcidid>0000-0002-0692-8999 ; 0000-0002-2985-3627 ; 0000-0001-9777-3437 ; 0000-0003-3410-8389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2394522154/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2394522154?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32332719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Sheng</creatorcontrib><creatorcontrib>Kim, Bokyung</creatorcontrib><creatorcontrib>Zhu, Xiaoqing</creatorcontrib><creatorcontrib>Gui, Xuehong</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Lan, Zhaohui</creatorcontrib><creatorcontrib>Prabhu, Preeti</creatorcontrib><creatorcontrib>Fond, Kenneth</creatorcontrib><creatorcontrib>Wang, Aijun</creatorcontrib><creatorcontrib>Guo, Fuzheng</creatorcontrib><title>Glial type specific regulation of CNS angiogenesis by HIFα-activated different signaling pathways</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The mechanisms by which oligodendroglia modulate CNS angiogenesis remain elusive. Previous in vitro data suggest that oligodendroglia regulate CNS endothelial cell proliferation and blood vessel formation through hypoxia inducible factor alpha (HIFα)-activated Wnt (but not VEGF) signaling. Using in vivo genetic models, we show that HIFα in oligodendroglia is necessary and sufficient for angiogenesis independent of CNS regions. At the molecular level, HIFα stabilization in oligodendroglia does not perturb Wnt signaling but rather activates VEGF. At the functional level, genetically blocking oligodendroglia-derived VEGF but not Wnt significantly decreases oligodendroglial HIFα-regulated CNS angiogenesis. Blocking astroglia-derived Wnt signaling reduces astroglial HIFα-regulated CNS angiogenesis. Together, our in vivo data demonstrate that oligodendroglial HIFα regulates CNS angiogenesis through Wnt-independent and VEGF-dependent signaling. These findings suggest an alternative mechanistic understanding of CNS angiogenesis by postnatal glial cells and unveil a glial cell type-dependent HIFα-Wnt axis in regulating CNS vessel formation.
In the central nervous system, the maturation of glial cells is temporally and functionally coupled with that of the vascular network during postnatal development. Here the authors show that oligodendroglial HIFα regulates CNS angiogenesis through Wnt-independent and VEGF-dependent signaling, while astroglial HIFα participates through Wnt-dependent signaling.</description><subject>13/51</subject><subject>14/1</subject><subject>14/32</subject><subject>14/63</subject><subject>38/77</subject><subject>631/136</subject><subject>631/136/16</subject><subject>631/378/368/2430</subject><subject>82/29</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Astrocytes</subject><subject>Astrocytes - metabolism</subject><subject>Blood vessels</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Central nervous system</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Female</subject><subject>Glial cells</subject><subject>Humanities and Social Sciences</subject><subject>Hypoxia</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>multidisciplinary</subject><subject>Neovascularization, Physiologic</subject><subject>Oligodendrocytes</subject><subject>Oligodendroglia - metabolism</subject><subject>Primary Cell Culture</subject><subject>Prosencephalon - blood supply</subject><subject>Prosencephalon - cytology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signaling</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Wnt protein</subject><subject>Wnt Signaling Pathway - physiology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAQgCMEolXpC3BAlrhwCfg3ji9IaEXblSo4AGdr4oxTr7LxYidF-1i8CM9EdlNKywFfbHm--eyxpyheMvqWUVG_y5LJSpeU05KpSlWlfFKccipZyTQXTx-sT4rznDd0HsKwWsrnxYngQnDNzGnRXPYBejLud0jyDl3wwZGE3dTDGOJAoierT18IDF2IHQ6YQybNnlytL379LMGN4RZGbEkbvMeEw0hy6Abow9CRHYw3P2CfXxTPPPQZz-_ms-Lbxcevq6vy-vPlevXhunRK0rFUvhFOCckUZYiydY3iVcU0VVUlALX3FIxj3glltFaMciaoaCQVtAbDjTgr1ou3jbCxuxS2kPY2QrDHjZg6C2kMrkcLlWqUBu-kr2XNpBGOGlfpFpoWua5n1_vFtZuaLbZurixB_0j6ODKEG9vFW6tZzSomZ8GbO0GK3yfMo92G7LDvYcA4ZcuFkbU25oi-_gfdxCnNj7hQinOmDhRfKJdizgn9_WUYtYeOsEtH2Lkj7LEj7CHp1cMy7lP-_P8MiAXIc2joMP09-z_a35r9wS8</recordid><startdate>20200424</startdate><enddate>20200424</enddate><creator>Zhang, Sheng</creator><creator>Kim, Bokyung</creator><creator>Zhu, Xiaoqing</creator><creator>Gui, Xuehong</creator><creator>Wang, Yan</creator><creator>Lan, Zhaohui</creator><creator>Prabhu, Preeti</creator><creator>Fond, Kenneth</creator><creator>Wang, Aijun</creator><creator>Guo, Fuzheng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0692-8999</orcidid><orcidid>https://orcid.org/0000-0002-2985-3627</orcidid><orcidid>https://orcid.org/0000-0001-9777-3437</orcidid><orcidid>https://orcid.org/0000-0003-3410-8389</orcidid></search><sort><creationdate>20200424</creationdate><title>Glial type specific regulation of CNS angiogenesis by HIFα-activated different signaling pathways</title><author>Zhang, Sheng ; Kim, Bokyung ; Zhu, Xiaoqing ; Gui, Xuehong ; Wang, Yan ; Lan, Zhaohui ; Prabhu, Preeti ; Fond, Kenneth ; Wang, Aijun ; Guo, Fuzheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-5fb3c5341501ee4dcb52661705663ae7ff0a9c1fc3597751021303b40308a9293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/51</topic><topic>14/1</topic><topic>14/32</topic><topic>14/63</topic><topic>38/77</topic><topic>631/136</topic><topic>631/136/16</topic><topic>631/378/368/2430</topic><topic>82/29</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Astrocytes</topic><topic>Astrocytes - metabolism</topic><topic>Blood vessels</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Central nervous system</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Female</topic><topic>Glial cells</topic><topic>Humanities and Social Sciences</topic><topic>Hypoxia</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>multidisciplinary</topic><topic>Neovascularization, Physiologic</topic><topic>Oligodendrocytes</topic><topic>Oligodendroglia - metabolism</topic><topic>Primary Cell Culture</topic><topic>Prosencephalon - blood supply</topic><topic>Prosencephalon - cytology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signaling</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Wnt protein</topic><topic>Wnt Signaling Pathway - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Sheng</creatorcontrib><creatorcontrib>Kim, Bokyung</creatorcontrib><creatorcontrib>Zhu, Xiaoqing</creatorcontrib><creatorcontrib>Gui, Xuehong</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Lan, Zhaohui</creatorcontrib><creatorcontrib>Prabhu, Preeti</creatorcontrib><creatorcontrib>Fond, Kenneth</creatorcontrib><creatorcontrib>Wang, Aijun</creatorcontrib><creatorcontrib>Guo, Fuzheng</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Sheng</au><au>Kim, Bokyung</au><au>Zhu, Xiaoqing</au><au>Gui, Xuehong</au><au>Wang, Yan</au><au>Lan, Zhaohui</au><au>Prabhu, Preeti</au><au>Fond, Kenneth</au><au>Wang, Aijun</au><au>Guo, Fuzheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glial type specific regulation of CNS angiogenesis by HIFα-activated different signaling pathways</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-04-24</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>2027</spage><epage>2027</epage><pages>2027-2027</pages><artnum>2027</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The mechanisms by which oligodendroglia modulate CNS angiogenesis remain elusive. Previous in vitro data suggest that oligodendroglia regulate CNS endothelial cell proliferation and blood vessel formation through hypoxia inducible factor alpha (HIFα)-activated Wnt (but not VEGF) signaling. Using in vivo genetic models, we show that HIFα in oligodendroglia is necessary and sufficient for angiogenesis independent of CNS regions. At the molecular level, HIFα stabilization in oligodendroglia does not perturb Wnt signaling but rather activates VEGF. At the functional level, genetically blocking oligodendroglia-derived VEGF but not Wnt significantly decreases oligodendroglial HIFα-regulated CNS angiogenesis. Blocking astroglia-derived Wnt signaling reduces astroglial HIFα-regulated CNS angiogenesis. Together, our in vivo data demonstrate that oligodendroglial HIFα regulates CNS angiogenesis through Wnt-independent and VEGF-dependent signaling. These findings suggest an alternative mechanistic understanding of CNS angiogenesis by postnatal glial cells and unveil a glial cell type-dependent HIFα-Wnt axis in regulating CNS vessel formation.
In the central nervous system, the maturation of glial cells is temporally and functionally coupled with that of the vascular network during postnatal development. Here the authors show that oligodendroglial HIFα regulates CNS angiogenesis through Wnt-independent and VEGF-dependent signaling, while astroglial HIFα participates through Wnt-dependent signaling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32332719</pmid><doi>10.1038/s41467-020-15656-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0692-8999</orcidid><orcidid>https://orcid.org/0000-0002-2985-3627</orcidid><orcidid>https://orcid.org/0000-0001-9777-3437</orcidid><orcidid>https://orcid.org/0000-0003-3410-8389</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2020-04, Vol.11 (1), p.2027-2027, Article 2027 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a65b57afc4f8481493c09c67dabde278 |
source | Open Access: PubMed Central; Nature; ProQuest - Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/51 14/1 14/32 14/63 38/77 631/136 631/136/16 631/378/368/2430 82/29 Angiogenesis Animals Animals, Newborn Astrocytes Astrocytes - metabolism Blood vessels Cell Proliferation Cells, Cultured Central nervous system Endothelial cells Endothelial Cells - metabolism Female Glial cells Humanities and Social Sciences Hypoxia Hypoxia-Inducible Factor 1, alpha Subunit - genetics Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Male Mice Mice, Knockout multidisciplinary Neovascularization, Physiologic Oligodendrocytes Oligodendroglia - metabolism Primary Cell Culture Prosencephalon - blood supply Prosencephalon - cytology Science Science (multidisciplinary) Signaling Vascular endothelial growth factor Vascular Endothelial Growth Factor A - metabolism Wnt protein Wnt Signaling Pathway - physiology |
title | Glial type specific regulation of CNS angiogenesis by HIFα-activated different signaling pathways |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glial%20type%20specific%20regulation%20of%20CNS%20angiogenesis%20by%20HIF%CE%B1-activated%20different%20signaling%20pathways&rft.jtitle=Nature%20communications&rft.au=Zhang,%20Sheng&rft.date=2020-04-24&rft.volume=11&rft.issue=1&rft.spage=2027&rft.epage=2027&rft.pages=2027-2027&rft.artnum=2027&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-15656-4&rft_dat=%3Cproquest_doaj_%3E2394879914%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-5fb3c5341501ee4dcb52661705663ae7ff0a9c1fc3597751021303b40308a9293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2394522154&rft_id=info:pmid/32332719&rfr_iscdi=true |