Loading…
Monitoring ocean currents during the passage of Typhoon Muifa using optical-fiber distributed acoustic sensing
In situ observations under typhoon conditions are sparse and limited. Distributed acoustic sensing (DAS) is an emerging technology that uses submarine optical-fiber (OF) cables to monitor the sea state. Here, we present DAS-based ocean current observations when a super typhoon passed overhead. The m...
Saved in:
Published in: | Nature communications 2024-02, Vol.15 (1), p.1111-1111, Article 1111 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In situ observations under typhoon conditions are sparse and limited. Distributed acoustic sensing (DAS) is an emerging technology that uses submarine optical-fiber (OF) cables to monitor the sea state. Here, we present DAS-based ocean current observations when a super typhoon passed overhead. The microseismic noise induced by ocean surface gravity waves (OSGWs) during Typhoon Muifa (2022) is observed in the ~0.08–0.38 Hz frequency band, with high-frequency (>0.3 Hz) component being tidally modulated. The OSGW propagation along the entire cable is successfully revealed via frequency–wavenumber analysis. Further, a method based on the current-induced Doppler shifts of DAS-recorded OSGW dispersions is proposed to calculate both speeds and directions of horizontal ocean currents. The measured current is consistent with the tidally induced sea-level fluctuations and sea-surface winds observed at a nearby ocean buoy. These observations demonstrate the feasibility of monitoring the ocean current under typhoon conditions using DAS-instrumented cables.
Using microseismic noise observed by distributed acoustic sensing (DAS) with a submarine cable, this study measures the magnitude and direction of ocean currents during the passage of typhoon Muifa and estimates the ocean wave propagation. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-024-45412-x |