Loading…
Adaptive Industrial Control System Attack Sample Expansion Algorithm Based on Generative Adversarial Network
The scarcity of attack samples is the bottleneck problem of anomaly detection of underlying business data in the industrial control system. Predecessors have done a lot of research on temporal data generation, but most of them are not suitable for industrial control attack sample generation. The cha...
Saved in:
Published in: | Applied sciences 2022-09, Vol.12 (17), p.8889 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-566ca2237c99a3efce2f7f2bc7a8244b4169fda2e9b913d611b908a0828dd73e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-566ca2237c99a3efce2f7f2bc7a8244b4169fda2e9b913d611b908a0828dd73e3 |
container_end_page | |
container_issue | 17 |
container_start_page | 8889 |
container_title | Applied sciences |
container_volume | 12 |
creator | Sha, Yun Chen, Zhaoyu Liu, Xuejun Yan, Yong Du, Chenchen Liu, Jiayi Han, Ranran |
description | The scarcity of attack samples is the bottleneck problem of anomaly detection of underlying business data in the industrial control system. Predecessors have done a lot of research on temporal data generation, but most of them are not suitable for industrial control attack sample generation. The change patterns of the characteristics of the underlying business data attack samples can be divided into three types: oscillation type, step type, and pulse type. This paper proposes an adaptive industrial control attack sample expansion algorithm based on GAN, which expands the three types of features in different ways. The basic network structure of data expansion adopts GAN. According to the characteristics of oscillation type changes, momentum is selected as the optimizer. Aiming at the characteristics of step type changes, the Adam optimization method is improved. For pulse type features, attack samples are generated according to the location and length of the pulse. Compared with previous time-series data generation methods, this method is more targeted for each feature and has higher similarities. |
doi_str_mv | 10.3390/app12178889 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a6723ff54d2143e2b5630c29ddde0e1a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a6723ff54d2143e2b5630c29ddde0e1a</doaj_id><sourcerecordid>2771650750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-566ca2237c99a3efce2f7f2bc7a8244b4169fda2e9b913d611b908a0828dd73e3</originalsourceid><addsrcrecordid>eNpNkctOwzAQRSMEEhWw4gcssUQFPxI7XoYKSiUEC2BtTewJpE3jYLs8_p7QIsRsZnR1dWZGN8tOGb0QQtNLGAbGmSrLUu9lE06VnIqcqf1_82F2EuOSjqWZKBmdZF3lYEjtO5JF7zYxhRY6MvN9Cr4jj18x4ZpUKYFdkUdYDx2S688B-tj6nlTdiw9tel2TK4joyCjNsccAW17l3jFE2ALvMX34sDrODhroIp789qPs-eb6aXY7vXuYL2bV3dQKmadpIaUFzoWyWoPAxiJvVMNrq6DkeV7nTOrGAUddj284yVitaQm05KVzSqA4yhY7rvOwNENo1xC-jIfWbAUfXgyE1NoODUjFRdMUueMsF8jrQgpquXbOIUUGI-tsxxqCf9tgTGbpN6EfzzdcKSYLqgo6us53Lht8jAGbv62Mmp90zL90xDe1VoLw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771650750</pqid></control><display><type>article</type><title>Adaptive Industrial Control System Attack Sample Expansion Algorithm Based on Generative Adversarial Network</title><source>Publicly Available Content Database</source><creator>Sha, Yun ; Chen, Zhaoyu ; Liu, Xuejun ; Yan, Yong ; Du, Chenchen ; Liu, Jiayi ; Han, Ranran</creator><creatorcontrib>Sha, Yun ; Chen, Zhaoyu ; Liu, Xuejun ; Yan, Yong ; Du, Chenchen ; Liu, Jiayi ; Han, Ranran</creatorcontrib><description>The scarcity of attack samples is the bottleneck problem of anomaly detection of underlying business data in the industrial control system. Predecessors have done a lot of research on temporal data generation, but most of them are not suitable for industrial control attack sample generation. The change patterns of the characteristics of the underlying business data attack samples can be divided into three types: oscillation type, step type, and pulse type. This paper proposes an adaptive industrial control attack sample expansion algorithm based on GAN, which expands the three types of features in different ways. The basic network structure of data expansion adopts GAN. According to the characteristics of oscillation type changes, momentum is selected as the optimizer. Aiming at the characteristics of step type changes, the Adam optimization method is improved. For pulse type features, attack samples are generated according to the location and length of the pulse. Compared with previous time-series data generation methods, this method is more targeted for each feature and has higher similarities.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app12178889</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptive sampling ; Algorithms ; Anomalies ; Control systems ; Datasets ; Deep learning ; generative adversarial networks ; improved Adam optimization method ; industrial control attack sample generation ; industrial control safety ; Industrial electronics ; Laboratories ; Natural gas ; Optimization ; Time series</subject><ispartof>Applied sciences, 2022-09, Vol.12 (17), p.8889</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-566ca2237c99a3efce2f7f2bc7a8244b4169fda2e9b913d611b908a0828dd73e3</citedby><cites>FETCH-LOGICAL-c364t-566ca2237c99a3efce2f7f2bc7a8244b4169fda2e9b913d611b908a0828dd73e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2771650750/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2771650750?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Sha, Yun</creatorcontrib><creatorcontrib>Chen, Zhaoyu</creatorcontrib><creatorcontrib>Liu, Xuejun</creatorcontrib><creatorcontrib>Yan, Yong</creatorcontrib><creatorcontrib>Du, Chenchen</creatorcontrib><creatorcontrib>Liu, Jiayi</creatorcontrib><creatorcontrib>Han, Ranran</creatorcontrib><title>Adaptive Industrial Control System Attack Sample Expansion Algorithm Based on Generative Adversarial Network</title><title>Applied sciences</title><description>The scarcity of attack samples is the bottleneck problem of anomaly detection of underlying business data in the industrial control system. Predecessors have done a lot of research on temporal data generation, but most of them are not suitable for industrial control attack sample generation. The change patterns of the characteristics of the underlying business data attack samples can be divided into three types: oscillation type, step type, and pulse type. This paper proposes an adaptive industrial control attack sample expansion algorithm based on GAN, which expands the three types of features in different ways. The basic network structure of data expansion adopts GAN. According to the characteristics of oscillation type changes, momentum is selected as the optimizer. Aiming at the characteristics of step type changes, the Adam optimization method is improved. For pulse type features, attack samples are generated according to the location and length of the pulse. Compared with previous time-series data generation methods, this method is more targeted for each feature and has higher similarities.</description><subject>Adaptive sampling</subject><subject>Algorithms</subject><subject>Anomalies</subject><subject>Control systems</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>generative adversarial networks</subject><subject>improved Adam optimization method</subject><subject>industrial control attack sample generation</subject><subject>industrial control safety</subject><subject>Industrial electronics</subject><subject>Laboratories</subject><subject>Natural gas</subject><subject>Optimization</subject><subject>Time series</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkctOwzAQRSMEEhWw4gcssUQFPxI7XoYKSiUEC2BtTewJpE3jYLs8_p7QIsRsZnR1dWZGN8tOGb0QQtNLGAbGmSrLUu9lE06VnIqcqf1_82F2EuOSjqWZKBmdZF3lYEjtO5JF7zYxhRY6MvN9Cr4jj18x4ZpUKYFdkUdYDx2S688B-tj6nlTdiw9tel2TK4joyCjNsccAW17l3jFE2ALvMX34sDrODhroIp789qPs-eb6aXY7vXuYL2bV3dQKmadpIaUFzoWyWoPAxiJvVMNrq6DkeV7nTOrGAUddj284yVitaQm05KVzSqA4yhY7rvOwNENo1xC-jIfWbAUfXgyE1NoODUjFRdMUueMsF8jrQgpquXbOIUUGI-tsxxqCf9tgTGbpN6EfzzdcKSYLqgo6us53Lht8jAGbv62Mmp90zL90xDe1VoLw</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Sha, Yun</creator><creator>Chen, Zhaoyu</creator><creator>Liu, Xuejun</creator><creator>Yan, Yong</creator><creator>Du, Chenchen</creator><creator>Liu, Jiayi</creator><creator>Han, Ranran</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20220901</creationdate><title>Adaptive Industrial Control System Attack Sample Expansion Algorithm Based on Generative Adversarial Network</title><author>Sha, Yun ; Chen, Zhaoyu ; Liu, Xuejun ; Yan, Yong ; Du, Chenchen ; Liu, Jiayi ; Han, Ranran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-566ca2237c99a3efce2f7f2bc7a8244b4169fda2e9b913d611b908a0828dd73e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive sampling</topic><topic>Algorithms</topic><topic>Anomalies</topic><topic>Control systems</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>generative adversarial networks</topic><topic>improved Adam optimization method</topic><topic>industrial control attack sample generation</topic><topic>industrial control safety</topic><topic>Industrial electronics</topic><topic>Laboratories</topic><topic>Natural gas</topic><topic>Optimization</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sha, Yun</creatorcontrib><creatorcontrib>Chen, Zhaoyu</creatorcontrib><creatorcontrib>Liu, Xuejun</creatorcontrib><creatorcontrib>Yan, Yong</creatorcontrib><creatorcontrib>Du, Chenchen</creatorcontrib><creatorcontrib>Liu, Jiayi</creatorcontrib><creatorcontrib>Han, Ranran</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sha, Yun</au><au>Chen, Zhaoyu</au><au>Liu, Xuejun</au><au>Yan, Yong</au><au>Du, Chenchen</au><au>Liu, Jiayi</au><au>Han, Ranran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Industrial Control System Attack Sample Expansion Algorithm Based on Generative Adversarial Network</atitle><jtitle>Applied sciences</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>12</volume><issue>17</issue><spage>8889</spage><pages>8889-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The scarcity of attack samples is the bottleneck problem of anomaly detection of underlying business data in the industrial control system. Predecessors have done a lot of research on temporal data generation, but most of them are not suitable for industrial control attack sample generation. The change patterns of the characteristics of the underlying business data attack samples can be divided into three types: oscillation type, step type, and pulse type. This paper proposes an adaptive industrial control attack sample expansion algorithm based on GAN, which expands the three types of features in different ways. The basic network structure of data expansion adopts GAN. According to the characteristics of oscillation type changes, momentum is selected as the optimizer. Aiming at the characteristics of step type changes, the Adam optimization method is improved. For pulse type features, attack samples are generated according to the location and length of the pulse. Compared with previous time-series data generation methods, this method is more targeted for each feature and has higher similarities.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app12178889</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2022-09, Vol.12 (17), p.8889 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a6723ff54d2143e2b5630c29ddde0e1a |
source | Publicly Available Content Database |
subjects | Adaptive sampling Algorithms Anomalies Control systems Datasets Deep learning generative adversarial networks improved Adam optimization method industrial control attack sample generation industrial control safety Industrial electronics Laboratories Natural gas Optimization Time series |
title | Adaptive Industrial Control System Attack Sample Expansion Algorithm Based on Generative Adversarial Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Industrial%20Control%20System%20Attack%20Sample%20Expansion%20Algorithm%20Based%20on%20Generative%20Adversarial%20Network&rft.jtitle=Applied%20sciences&rft.au=Sha,%20Yun&rft.date=2022-09-01&rft.volume=12&rft.issue=17&rft.spage=8889&rft.pages=8889-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app12178889&rft_dat=%3Cproquest_doaj_%3E2771650750%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-566ca2237c99a3efce2f7f2bc7a8244b4169fda2e9b913d611b908a0828dd73e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2771650750&rft_id=info:pmid/&rfr_iscdi=true |