Loading…

Adaptive Industrial Control System Attack Sample Expansion Algorithm Based on Generative Adversarial Network

The scarcity of attack samples is the bottleneck problem of anomaly detection of underlying business data in the industrial control system. Predecessors have done a lot of research on temporal data generation, but most of them are not suitable for industrial control attack sample generation. The cha...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2022-09, Vol.12 (17), p.8889
Main Authors: Sha, Yun, Chen, Zhaoyu, Liu, Xuejun, Yan, Yong, Du, Chenchen, Liu, Jiayi, Han, Ranran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-566ca2237c99a3efce2f7f2bc7a8244b4169fda2e9b913d611b908a0828dd73e3
cites cdi_FETCH-LOGICAL-c364t-566ca2237c99a3efce2f7f2bc7a8244b4169fda2e9b913d611b908a0828dd73e3
container_end_page
container_issue 17
container_start_page 8889
container_title Applied sciences
container_volume 12
creator Sha, Yun
Chen, Zhaoyu
Liu, Xuejun
Yan, Yong
Du, Chenchen
Liu, Jiayi
Han, Ranran
description The scarcity of attack samples is the bottleneck problem of anomaly detection of underlying business data in the industrial control system. Predecessors have done a lot of research on temporal data generation, but most of them are not suitable for industrial control attack sample generation. The change patterns of the characteristics of the underlying business data attack samples can be divided into three types: oscillation type, step type, and pulse type. This paper proposes an adaptive industrial control attack sample expansion algorithm based on GAN, which expands the three types of features in different ways. The basic network structure of data expansion adopts GAN. According to the characteristics of oscillation type changes, momentum is selected as the optimizer. Aiming at the characteristics of step type changes, the Adam optimization method is improved. For pulse type features, attack samples are generated according to the location and length of the pulse. Compared with previous time-series data generation methods, this method is more targeted for each feature and has higher similarities.
doi_str_mv 10.3390/app12178889
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a6723ff54d2143e2b5630c29ddde0e1a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a6723ff54d2143e2b5630c29ddde0e1a</doaj_id><sourcerecordid>2771650750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-566ca2237c99a3efce2f7f2bc7a8244b4169fda2e9b913d611b908a0828dd73e3</originalsourceid><addsrcrecordid>eNpNkctOwzAQRSMEEhWw4gcssUQFPxI7XoYKSiUEC2BtTewJpE3jYLs8_p7QIsRsZnR1dWZGN8tOGb0QQtNLGAbGmSrLUu9lE06VnIqcqf1_82F2EuOSjqWZKBmdZF3lYEjtO5JF7zYxhRY6MvN9Cr4jj18x4ZpUKYFdkUdYDx2S688B-tj6nlTdiw9tel2TK4joyCjNsccAW17l3jFE2ALvMX34sDrODhroIp789qPs-eb6aXY7vXuYL2bV3dQKmadpIaUFzoWyWoPAxiJvVMNrq6DkeV7nTOrGAUddj284yVitaQm05KVzSqA4yhY7rvOwNENo1xC-jIfWbAUfXgyE1NoODUjFRdMUueMsF8jrQgpquXbOIUUGI-tsxxqCf9tgTGbpN6EfzzdcKSYLqgo6us53Lht8jAGbv62Mmp90zL90xDe1VoLw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771650750</pqid></control><display><type>article</type><title>Adaptive Industrial Control System Attack Sample Expansion Algorithm Based on Generative Adversarial Network</title><source>Publicly Available Content Database</source><creator>Sha, Yun ; Chen, Zhaoyu ; Liu, Xuejun ; Yan, Yong ; Du, Chenchen ; Liu, Jiayi ; Han, Ranran</creator><creatorcontrib>Sha, Yun ; Chen, Zhaoyu ; Liu, Xuejun ; Yan, Yong ; Du, Chenchen ; Liu, Jiayi ; Han, Ranran</creatorcontrib><description>The scarcity of attack samples is the bottleneck problem of anomaly detection of underlying business data in the industrial control system. Predecessors have done a lot of research on temporal data generation, but most of them are not suitable for industrial control attack sample generation. The change patterns of the characteristics of the underlying business data attack samples can be divided into three types: oscillation type, step type, and pulse type. This paper proposes an adaptive industrial control attack sample expansion algorithm based on GAN, which expands the three types of features in different ways. The basic network structure of data expansion adopts GAN. According to the characteristics of oscillation type changes, momentum is selected as the optimizer. Aiming at the characteristics of step type changes, the Adam optimization method is improved. For pulse type features, attack samples are generated according to the location and length of the pulse. Compared with previous time-series data generation methods, this method is more targeted for each feature and has higher similarities.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app12178889</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptive sampling ; Algorithms ; Anomalies ; Control systems ; Datasets ; Deep learning ; generative adversarial networks ; improved Adam optimization method ; industrial control attack sample generation ; industrial control safety ; Industrial electronics ; Laboratories ; Natural gas ; Optimization ; Time series</subject><ispartof>Applied sciences, 2022-09, Vol.12 (17), p.8889</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-566ca2237c99a3efce2f7f2bc7a8244b4169fda2e9b913d611b908a0828dd73e3</citedby><cites>FETCH-LOGICAL-c364t-566ca2237c99a3efce2f7f2bc7a8244b4169fda2e9b913d611b908a0828dd73e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2771650750/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2771650750?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Sha, Yun</creatorcontrib><creatorcontrib>Chen, Zhaoyu</creatorcontrib><creatorcontrib>Liu, Xuejun</creatorcontrib><creatorcontrib>Yan, Yong</creatorcontrib><creatorcontrib>Du, Chenchen</creatorcontrib><creatorcontrib>Liu, Jiayi</creatorcontrib><creatorcontrib>Han, Ranran</creatorcontrib><title>Adaptive Industrial Control System Attack Sample Expansion Algorithm Based on Generative Adversarial Network</title><title>Applied sciences</title><description>The scarcity of attack samples is the bottleneck problem of anomaly detection of underlying business data in the industrial control system. Predecessors have done a lot of research on temporal data generation, but most of them are not suitable for industrial control attack sample generation. The change patterns of the characteristics of the underlying business data attack samples can be divided into three types: oscillation type, step type, and pulse type. This paper proposes an adaptive industrial control attack sample expansion algorithm based on GAN, which expands the three types of features in different ways. The basic network structure of data expansion adopts GAN. According to the characteristics of oscillation type changes, momentum is selected as the optimizer. Aiming at the characteristics of step type changes, the Adam optimization method is improved. For pulse type features, attack samples are generated according to the location and length of the pulse. Compared with previous time-series data generation methods, this method is more targeted for each feature and has higher similarities.</description><subject>Adaptive sampling</subject><subject>Algorithms</subject><subject>Anomalies</subject><subject>Control systems</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>generative adversarial networks</subject><subject>improved Adam optimization method</subject><subject>industrial control attack sample generation</subject><subject>industrial control safety</subject><subject>Industrial electronics</subject><subject>Laboratories</subject><subject>Natural gas</subject><subject>Optimization</subject><subject>Time series</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkctOwzAQRSMEEhWw4gcssUQFPxI7XoYKSiUEC2BtTewJpE3jYLs8_p7QIsRsZnR1dWZGN8tOGb0QQtNLGAbGmSrLUu9lE06VnIqcqf1_82F2EuOSjqWZKBmdZF3lYEjtO5JF7zYxhRY6MvN9Cr4jj18x4ZpUKYFdkUdYDx2S688B-tj6nlTdiw9tel2TK4joyCjNsccAW17l3jFE2ALvMX34sDrODhroIp789qPs-eb6aXY7vXuYL2bV3dQKmadpIaUFzoWyWoPAxiJvVMNrq6DkeV7nTOrGAUddj284yVitaQm05KVzSqA4yhY7rvOwNENo1xC-jIfWbAUfXgyE1NoODUjFRdMUueMsF8jrQgpquXbOIUUGI-tsxxqCf9tgTGbpN6EfzzdcKSYLqgo6us53Lht8jAGbv62Mmp90zL90xDe1VoLw</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Sha, Yun</creator><creator>Chen, Zhaoyu</creator><creator>Liu, Xuejun</creator><creator>Yan, Yong</creator><creator>Du, Chenchen</creator><creator>Liu, Jiayi</creator><creator>Han, Ranran</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20220901</creationdate><title>Adaptive Industrial Control System Attack Sample Expansion Algorithm Based on Generative Adversarial Network</title><author>Sha, Yun ; Chen, Zhaoyu ; Liu, Xuejun ; Yan, Yong ; Du, Chenchen ; Liu, Jiayi ; Han, Ranran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-566ca2237c99a3efce2f7f2bc7a8244b4169fda2e9b913d611b908a0828dd73e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive sampling</topic><topic>Algorithms</topic><topic>Anomalies</topic><topic>Control systems</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>generative adversarial networks</topic><topic>improved Adam optimization method</topic><topic>industrial control attack sample generation</topic><topic>industrial control safety</topic><topic>Industrial electronics</topic><topic>Laboratories</topic><topic>Natural gas</topic><topic>Optimization</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sha, Yun</creatorcontrib><creatorcontrib>Chen, Zhaoyu</creatorcontrib><creatorcontrib>Liu, Xuejun</creatorcontrib><creatorcontrib>Yan, Yong</creatorcontrib><creatorcontrib>Du, Chenchen</creatorcontrib><creatorcontrib>Liu, Jiayi</creatorcontrib><creatorcontrib>Han, Ranran</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sha, Yun</au><au>Chen, Zhaoyu</au><au>Liu, Xuejun</au><au>Yan, Yong</au><au>Du, Chenchen</au><au>Liu, Jiayi</au><au>Han, Ranran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Industrial Control System Attack Sample Expansion Algorithm Based on Generative Adversarial Network</atitle><jtitle>Applied sciences</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>12</volume><issue>17</issue><spage>8889</spage><pages>8889-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The scarcity of attack samples is the bottleneck problem of anomaly detection of underlying business data in the industrial control system. Predecessors have done a lot of research on temporal data generation, but most of them are not suitable for industrial control attack sample generation. The change patterns of the characteristics of the underlying business data attack samples can be divided into three types: oscillation type, step type, and pulse type. This paper proposes an adaptive industrial control attack sample expansion algorithm based on GAN, which expands the three types of features in different ways. The basic network structure of data expansion adopts GAN. According to the characteristics of oscillation type changes, momentum is selected as the optimizer. Aiming at the characteristics of step type changes, the Adam optimization method is improved. For pulse type features, attack samples are generated according to the location and length of the pulse. Compared with previous time-series data generation methods, this method is more targeted for each feature and has higher similarities.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app12178889</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2022-09, Vol.12 (17), p.8889
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a6723ff54d2143e2b5630c29ddde0e1a
source Publicly Available Content Database
subjects Adaptive sampling
Algorithms
Anomalies
Control systems
Datasets
Deep learning
generative adversarial networks
improved Adam optimization method
industrial control attack sample generation
industrial control safety
Industrial electronics
Laboratories
Natural gas
Optimization
Time series
title Adaptive Industrial Control System Attack Sample Expansion Algorithm Based on Generative Adversarial Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Industrial%20Control%20System%20Attack%20Sample%20Expansion%20Algorithm%20Based%20on%20Generative%20Adversarial%20Network&rft.jtitle=Applied%20sciences&rft.au=Sha,%20Yun&rft.date=2022-09-01&rft.volume=12&rft.issue=17&rft.spage=8889&rft.pages=8889-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app12178889&rft_dat=%3Cproquest_doaj_%3E2771650750%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-566ca2237c99a3efce2f7f2bc7a8244b4169fda2e9b913d611b908a0828dd73e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2771650750&rft_id=info:pmid/&rfr_iscdi=true