Loading…

Supramolecular Assemblies in Mn(II) and Zn(II) Metal–Organic Compounds Involving Phenanthroline and Benzoate: Experimental and Theoretical Studies

Two new Mn(II) and Zn(II) metal–organic compounds of 1,10-phenanthroline and methyl benzoates viz. [Mn(phen)2Cl2]2-ClBzH (1) and [Zn(4-MeBz)2(2-AmPy)2] (2) (where 4-MeBz = 4-methylbenzoate, 2-AmPy = 2-aminopyridine, phen = 1,10-phenanthroline, 2-ClBzH = 2-chlorobenzoic acid) were synthesized and cha...

Full description

Saved in:
Bibliographic Details
Published in:Inorganics 2024-05, Vol.12 (5), p.139
Main Authors: Boro, Mridul, Banik, Subham, Gomila, Rosa M., Frontera, Antonio, Barcelo-Oliver, Miquel, Bhattacharyya, Manjit K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two new Mn(II) and Zn(II) metal–organic compounds of 1,10-phenanthroline and methyl benzoates viz. [Mn(phen)2Cl2]2-ClBzH (1) and [Zn(4-MeBz)2(2-AmPy)2] (2) (where 4-MeBz = 4-methylbenzoate, 2-AmPy = 2-aminopyridine, phen = 1,10-phenanthroline, 2-ClBzH = 2-chlorobenzoic acid) were synthesized and characterized using elemental analysis, TGA, spectroscopic (FTIR, electronic) and single crystal X-ray diffraction techniques. The crystal structure analysis of the compounds revealed the presence of various non-covalent interactions, which provides stability to the crystal structures. The crystal structure analysis of compound 1 revealed the formation of a supramolecular dimer of 2-ClBzH enclathrate within the hexameric host cavity formed by the neighboring monomeric units. Compound 2 is a mononuclear compound of Zn(II) where flexible binding topologies of 4-CH3Bz are observed with the metal center. Moreover, various non-covalent interactions, such as lp(O)-π, lp(Cl)-π, C–H∙∙∙Cl, π-stacking interactions as well as N–H∙∙∙O, C–H∙∙∙O and C–H∙∙∙π hydrogen bonding interactions, are found to be involved in plateauing the molecular self-association of the compounds. The remarkable enclathration of the H-bonded 2-ClBzH dimer into a supramolecular cavity formed by two [Mn(phen)2Cl2] complexes were further studied theoretically using density functional theory (DFT) calculations, the non-covalent interaction (NCI) plot index and quantum theory of atoms in molecules (QTAIM) computational tools. Synergistic effects were also analyzed using molecular electrostatic potential (MEP) surface analysis.
ISSN:2304-6740
2304-6740
DOI:10.3390/inorganics12050139