Loading…

HLA-check: evaluating HLA data from SNP information

The major histocompatibility complex (MHC) region of the human genome, and specifically the human leukocyte antigen (HLA) genes, play a major role in numerous human diseases. With the recent progress of sequencing methods (eg, Next-Generation Sequencing, NGS), the accurate genotyping of this region...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics 2017-07, Vol.18 (1), p.334-334, Article 334
Main Authors: Jeanmougin, Marc, Noirel, Josselin, Coulonges, Cédric, Zagury, Jean-François
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c594t-9b9d50116f5908c20d955a1f5a03a51257b3d10c930ae6fba32c09533e73cc953
cites cdi_FETCH-LOGICAL-c594t-9b9d50116f5908c20d955a1f5a03a51257b3d10c930ae6fba32c09533e73cc953
container_end_page 334
container_issue 1
container_start_page 334
container_title BMC bioinformatics
container_volume 18
creator Jeanmougin, Marc
Noirel, Josselin
Coulonges, Cédric
Zagury, Jean-François
description The major histocompatibility complex (MHC) region of the human genome, and specifically the human leukocyte antigen (HLA) genes, play a major role in numerous human diseases. With the recent progress of sequencing methods (eg, Next-Generation Sequencing, NGS), the accurate genotyping of this region has become possible but remains relatively costly. In order to obtain the HLA information for the millions of samples already genotyped by chips in the past ten years, efficient bioinformatics tools, such as SNP2HLA or HIBAG, have been developed that infer HLA information from the linkage disequilibrium existing between HLA alleles and SNP markers in the MHC region. In this study, we first used ShapeIT and Impute2 to implement an imputation method akin to SNP2HLA and found a comparable quality of imputation on a European dataset. More importantly, we developed a new tool, HLA-check, that allows for the detection of aberrant HLA allele calling with regard to the SNP genotypes in the region. Adding this tool to the HLA imputation software increases dramatically their accuracy, especially for HLA class I genes. Overall, HLA-check was able to identify a limited number of implausible HLA typings (less than 10%) in a population, and these samples can then either be removed or be retyped by NGS for HLA association analysis.
doi_str_mv 10.1186/s12859-017-1746-1
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a68993a7ca874837825a1ca7ce7f9d26</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A511344858</galeid><doaj_id>oai_doaj_org_article_a68993a7ca874837825a1ca7ce7f9d26</doaj_id><sourcerecordid>A511344858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-9b9d50116f5908c20d955a1f5a03a51257b3d10c930ae6fba32c09533e73cc953</originalsourceid><addsrcrecordid>eNptksFu1DAQhiMEoqXwAFxQJC5wSPHYcWxzQFpVtF1pBYjC2Zp1nNRLErd2UsHb47Cl2iDkg8cz3_wjj_4sewnkFEBW7yJQyVVBQBQgyqqAR9kxlAIKCoQ_PoiPsmcx7kgCJeFPsyMqKyVEBccZu9ysCnNtzY_3ub3DbsLRDW2esnmNI-ZN8H1-9elL7obGhz5V_fA8e9JgF-2L-_sk-37-8dvZZbH5fLE-W20Kw1U5Fmqrak4AqoYrIg0lteIcoeFIGHKgXGxZDcQoRtBWzRYZNURxxqxgxqTgJFvvdWuPO30TXI_hl_bo9J-ED63GMDrTWY2VVIqhMChFKZmQNE0y6W1Fo2paJa0Pe62badvb2thhDNgtRJeVwV3r1t9pzkkpqEwCb-4Fgr-dbBx176KxXYeD9VPUoCDNrQQRCX39D7rzUxjSqhJFORGElQdUi-kD83rTXDOL6hUHYGUp-Tz29D9UOrXtnfGDbVzKLxreLhoSM9qfY4tTjHp99XXJwp41wccYbPOwDyB6dpjeO0wn4-jZYRpSz6vDRT50_LUU-w3rtcYk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925070347</pqid></control><display><type>article</type><title>HLA-check: evaluating HLA data from SNP information</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Jeanmougin, Marc ; Noirel, Josselin ; Coulonges, Cédric ; Zagury, Jean-François</creator><creatorcontrib>Jeanmougin, Marc ; Noirel, Josselin ; Coulonges, Cédric ; Zagury, Jean-François</creatorcontrib><description>The major histocompatibility complex (MHC) region of the human genome, and specifically the human leukocyte antigen (HLA) genes, play a major role in numerous human diseases. With the recent progress of sequencing methods (eg, Next-Generation Sequencing, NGS), the accurate genotyping of this region has become possible but remains relatively costly. In order to obtain the HLA information for the millions of samples already genotyped by chips in the past ten years, efficient bioinformatics tools, such as SNP2HLA or HIBAG, have been developed that infer HLA information from the linkage disequilibrium existing between HLA alleles and SNP markers in the MHC region. In this study, we first used ShapeIT and Impute2 to implement an imputation method akin to SNP2HLA and found a comparable quality of imputation on a European dataset. More importantly, we developed a new tool, HLA-check, that allows for the detection of aberrant HLA allele calling with regard to the SNP genotypes in the region. Adding this tool to the HLA imputation software increases dramatically their accuracy, especially for HLA class I genes. Overall, HLA-check was able to identify a limited number of implausible HLA typings (less than 10%) in a population, and these samples can then either be removed or be retyped by NGS for HLA association analysis.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/s12859-017-1746-1</identifier><identifier>PMID: 28697761</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Aberration ; Accuracy ; Algorithms ; Alleles ; Antigens ; Archives &amp; records ; Association analysis ; Binding sites ; Bioinformatics ; Chips ; Consortia ; Diabetes ; European Continental Ancestry Group - genetics ; Genes ; Genetic aspects ; Genetics ; Genomes ; Genomics ; Genotypes ; Genotyping ; Genotyping Techniques - methods ; Histocompatibility antigen HLA ; Histocompatibility antigens ; Histocompatibility Antigens Class I - genetics ; Histocompatibility Testing ; HLA Antigens - genetics ; HLA histocompatibility antigens ; Human leukocyte antigen ; Humans ; Imputation ; Linkage Disequilibrium ; Major histocompatibility complex ; Polymorphism, Single Nucleotide ; Population ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Software ; Studies ; Transplants &amp; implants</subject><ispartof>BMC bioinformatics, 2017-07, Vol.18 (1), p.334-334, Article 334</ispartof><rights>COPYRIGHT 2017 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2017</rights><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-9b9d50116f5908c20d955a1f5a03a51257b3d10c930ae6fba32c09533e73cc953</citedby><cites>FETCH-LOGICAL-c594t-9b9d50116f5908c20d955a1f5a03a51257b3d10c930ae6fba32c09533e73cc953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504728/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1925070347?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28697761$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeanmougin, Marc</creatorcontrib><creatorcontrib>Noirel, Josselin</creatorcontrib><creatorcontrib>Coulonges, Cédric</creatorcontrib><creatorcontrib>Zagury, Jean-François</creatorcontrib><title>HLA-check: evaluating HLA data from SNP information</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>The major histocompatibility complex (MHC) region of the human genome, and specifically the human leukocyte antigen (HLA) genes, play a major role in numerous human diseases. With the recent progress of sequencing methods (eg, Next-Generation Sequencing, NGS), the accurate genotyping of this region has become possible but remains relatively costly. In order to obtain the HLA information for the millions of samples already genotyped by chips in the past ten years, efficient bioinformatics tools, such as SNP2HLA or HIBAG, have been developed that infer HLA information from the linkage disequilibrium existing between HLA alleles and SNP markers in the MHC region. In this study, we first used ShapeIT and Impute2 to implement an imputation method akin to SNP2HLA and found a comparable quality of imputation on a European dataset. More importantly, we developed a new tool, HLA-check, that allows for the detection of aberrant HLA allele calling with regard to the SNP genotypes in the region. Adding this tool to the HLA imputation software increases dramatically their accuracy, especially for HLA class I genes. Overall, HLA-check was able to identify a limited number of implausible HLA typings (less than 10%) in a population, and these samples can then either be removed or be retyped by NGS for HLA association analysis.</description><subject>Aberration</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Alleles</subject><subject>Antigens</subject><subject>Archives &amp; records</subject><subject>Association analysis</subject><subject>Binding sites</subject><subject>Bioinformatics</subject><subject>Chips</subject><subject>Consortia</subject><subject>Diabetes</subject><subject>European Continental Ancestry Group - genetics</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotypes</subject><subject>Genotyping</subject><subject>Genotyping Techniques - methods</subject><subject>Histocompatibility antigen HLA</subject><subject>Histocompatibility antigens</subject><subject>Histocompatibility Antigens Class I - genetics</subject><subject>Histocompatibility Testing</subject><subject>HLA Antigens - genetics</subject><subject>HLA histocompatibility antigens</subject><subject>Human leukocyte antigen</subject><subject>Humans</subject><subject>Imputation</subject><subject>Linkage Disequilibrium</subject><subject>Major histocompatibility complex</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Population</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Software</subject><subject>Studies</subject><subject>Transplants &amp; implants</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptksFu1DAQhiMEoqXwAFxQJC5wSPHYcWxzQFpVtF1pBYjC2Zp1nNRLErd2UsHb47Cl2iDkg8cz3_wjj_4sewnkFEBW7yJQyVVBQBQgyqqAR9kxlAIKCoQ_PoiPsmcx7kgCJeFPsyMqKyVEBccZu9ysCnNtzY_3ub3DbsLRDW2esnmNI-ZN8H1-9elL7obGhz5V_fA8e9JgF-2L-_sk-37-8dvZZbH5fLE-W20Kw1U5Fmqrak4AqoYrIg0lteIcoeFIGHKgXGxZDcQoRtBWzRYZNURxxqxgxqTgJFvvdWuPO30TXI_hl_bo9J-ED63GMDrTWY2VVIqhMChFKZmQNE0y6W1Fo2paJa0Pe62badvb2thhDNgtRJeVwV3r1t9pzkkpqEwCb-4Fgr-dbBx176KxXYeD9VPUoCDNrQQRCX39D7rzUxjSqhJFORGElQdUi-kD83rTXDOL6hUHYGUp-Tz29D9UOrXtnfGDbVzKLxreLhoSM9qfY4tTjHp99XXJwp41wccYbPOwDyB6dpjeO0wn4-jZYRpSz6vDRT50_LUU-w3rtcYk</recordid><startdate>20170711</startdate><enddate>20170711</enddate><creator>Jeanmougin, Marc</creator><creator>Noirel, Josselin</creator><creator>Coulonges, Cédric</creator><creator>Zagury, Jean-François</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170711</creationdate><title>HLA-check: evaluating HLA data from SNP information</title><author>Jeanmougin, Marc ; Noirel, Josselin ; Coulonges, Cédric ; Zagury, Jean-François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-9b9d50116f5908c20d955a1f5a03a51257b3d10c930ae6fba32c09533e73cc953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aberration</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Alleles</topic><topic>Antigens</topic><topic>Archives &amp; records</topic><topic>Association analysis</topic><topic>Binding sites</topic><topic>Bioinformatics</topic><topic>Chips</topic><topic>Consortia</topic><topic>Diabetes</topic><topic>European Continental Ancestry Group - genetics</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotypes</topic><topic>Genotyping</topic><topic>Genotyping Techniques - methods</topic><topic>Histocompatibility antigen HLA</topic><topic>Histocompatibility antigens</topic><topic>Histocompatibility Antigens Class I - genetics</topic><topic>Histocompatibility Testing</topic><topic>HLA Antigens - genetics</topic><topic>HLA histocompatibility antigens</topic><topic>Human leukocyte antigen</topic><topic>Humans</topic><topic>Imputation</topic><topic>Linkage Disequilibrium</topic><topic>Major histocompatibility complex</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Population</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Software</topic><topic>Studies</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeanmougin, Marc</creatorcontrib><creatorcontrib>Noirel, Josselin</creatorcontrib><creatorcontrib>Coulonges, Cédric</creatorcontrib><creatorcontrib>Zagury, Jean-François</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeanmougin, Marc</au><au>Noirel, Josselin</au><au>Coulonges, Cédric</au><au>Zagury, Jean-François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HLA-check: evaluating HLA data from SNP information</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2017-07-11</date><risdate>2017</risdate><volume>18</volume><issue>1</issue><spage>334</spage><epage>334</epage><pages>334-334</pages><artnum>334</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>The major histocompatibility complex (MHC) region of the human genome, and specifically the human leukocyte antigen (HLA) genes, play a major role in numerous human diseases. With the recent progress of sequencing methods (eg, Next-Generation Sequencing, NGS), the accurate genotyping of this region has become possible but remains relatively costly. In order to obtain the HLA information for the millions of samples already genotyped by chips in the past ten years, efficient bioinformatics tools, such as SNP2HLA or HIBAG, have been developed that infer HLA information from the linkage disequilibrium existing between HLA alleles and SNP markers in the MHC region. In this study, we first used ShapeIT and Impute2 to implement an imputation method akin to SNP2HLA and found a comparable quality of imputation on a European dataset. More importantly, we developed a new tool, HLA-check, that allows for the detection of aberrant HLA allele calling with regard to the SNP genotypes in the region. Adding this tool to the HLA imputation software increases dramatically their accuracy, especially for HLA class I genes. Overall, HLA-check was able to identify a limited number of implausible HLA typings (less than 10%) in a population, and these samples can then either be removed or be retyped by NGS for HLA association analysis.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>28697761</pmid><doi>10.1186/s12859-017-1746-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2105
ispartof BMC bioinformatics, 2017-07, Vol.18 (1), p.334-334, Article 334
issn 1471-2105
1471-2105
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a68993a7ca874837825a1ca7ce7f9d26
source PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Aberration
Accuracy
Algorithms
Alleles
Antigens
Archives & records
Association analysis
Binding sites
Bioinformatics
Chips
Consortia
Diabetes
European Continental Ancestry Group - genetics
Genes
Genetic aspects
Genetics
Genomes
Genomics
Genotypes
Genotyping
Genotyping Techniques - methods
Histocompatibility antigen HLA
Histocompatibility antigens
Histocompatibility Antigens Class I - genetics
Histocompatibility Testing
HLA Antigens - genetics
HLA histocompatibility antigens
Human leukocyte antigen
Humans
Imputation
Linkage Disequilibrium
Major histocompatibility complex
Polymorphism, Single Nucleotide
Population
Single nucleotide polymorphisms
Single-nucleotide polymorphism
Software
Studies
Transplants & implants
title HLA-check: evaluating HLA data from SNP information
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A06%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HLA-check:%20evaluating%20HLA%20data%20from%20SNP%20information&rft.jtitle=BMC%20bioinformatics&rft.au=Jeanmougin,%20Marc&rft.date=2017-07-11&rft.volume=18&rft.issue=1&rft.spage=334&rft.epage=334&rft.pages=334-334&rft.artnum=334&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/s12859-017-1746-1&rft_dat=%3Cgale_doaj_%3EA511344858%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-9b9d50116f5908c20d955a1f5a03a51257b3d10c930ae6fba32c09533e73cc953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1925070347&rft_id=info:pmid/28697761&rft_galeid=A511344858&rfr_iscdi=true