Loading…
HLA-check: evaluating HLA data from SNP information
The major histocompatibility complex (MHC) region of the human genome, and specifically the human leukocyte antigen (HLA) genes, play a major role in numerous human diseases. With the recent progress of sequencing methods (eg, Next-Generation Sequencing, NGS), the accurate genotyping of this region...
Saved in:
Published in: | BMC bioinformatics 2017-07, Vol.18 (1), p.334-334, Article 334 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c594t-9b9d50116f5908c20d955a1f5a03a51257b3d10c930ae6fba32c09533e73cc953 |
---|---|
cites | cdi_FETCH-LOGICAL-c594t-9b9d50116f5908c20d955a1f5a03a51257b3d10c930ae6fba32c09533e73cc953 |
container_end_page | 334 |
container_issue | 1 |
container_start_page | 334 |
container_title | BMC bioinformatics |
container_volume | 18 |
creator | Jeanmougin, Marc Noirel, Josselin Coulonges, Cédric Zagury, Jean-François |
description | The major histocompatibility complex (MHC) region of the human genome, and specifically the human leukocyte antigen (HLA) genes, play a major role in numerous human diseases. With the recent progress of sequencing methods (eg, Next-Generation Sequencing, NGS), the accurate genotyping of this region has become possible but remains relatively costly. In order to obtain the HLA information for the millions of samples already genotyped by chips in the past ten years, efficient bioinformatics tools, such as SNP2HLA or HIBAG, have been developed that infer HLA information from the linkage disequilibrium existing between HLA alleles and SNP markers in the MHC region.
In this study, we first used ShapeIT and Impute2 to implement an imputation method akin to SNP2HLA and found a comparable quality of imputation on a European dataset. More importantly, we developed a new tool, HLA-check, that allows for the detection of aberrant HLA allele calling with regard to the SNP genotypes in the region. Adding this tool to the HLA imputation software increases dramatically their accuracy, especially for HLA class I genes.
Overall, HLA-check was able to identify a limited number of implausible HLA typings (less than 10%) in a population, and these samples can then either be removed or be retyped by NGS for HLA association analysis. |
doi_str_mv | 10.1186/s12859-017-1746-1 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a68993a7ca874837825a1ca7ce7f9d26</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A511344858</galeid><doaj_id>oai_doaj_org_article_a68993a7ca874837825a1ca7ce7f9d26</doaj_id><sourcerecordid>A511344858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-9b9d50116f5908c20d955a1f5a03a51257b3d10c930ae6fba32c09533e73cc953</originalsourceid><addsrcrecordid>eNptksFu1DAQhiMEoqXwAFxQJC5wSPHYcWxzQFpVtF1pBYjC2Zp1nNRLErd2UsHb47Cl2iDkg8cz3_wjj_4sewnkFEBW7yJQyVVBQBQgyqqAR9kxlAIKCoQ_PoiPsmcx7kgCJeFPsyMqKyVEBccZu9ysCnNtzY_3ub3DbsLRDW2esnmNI-ZN8H1-9elL7obGhz5V_fA8e9JgF-2L-_sk-37-8dvZZbH5fLE-W20Kw1U5Fmqrak4AqoYrIg0lteIcoeFIGHKgXGxZDcQoRtBWzRYZNURxxqxgxqTgJFvvdWuPO30TXI_hl_bo9J-ED63GMDrTWY2VVIqhMChFKZmQNE0y6W1Fo2paJa0Pe62badvb2thhDNgtRJeVwV3r1t9pzkkpqEwCb-4Fgr-dbBx176KxXYeD9VPUoCDNrQQRCX39D7rzUxjSqhJFORGElQdUi-kD83rTXDOL6hUHYGUp-Tz29D9UOrXtnfGDbVzKLxreLhoSM9qfY4tTjHp99XXJwp41wccYbPOwDyB6dpjeO0wn4-jZYRpSz6vDRT50_LUU-w3rtcYk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925070347</pqid></control><display><type>article</type><title>HLA-check: evaluating HLA data from SNP information</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Jeanmougin, Marc ; Noirel, Josselin ; Coulonges, Cédric ; Zagury, Jean-François</creator><creatorcontrib>Jeanmougin, Marc ; Noirel, Josselin ; Coulonges, Cédric ; Zagury, Jean-François</creatorcontrib><description>The major histocompatibility complex (MHC) region of the human genome, and specifically the human leukocyte antigen (HLA) genes, play a major role in numerous human diseases. With the recent progress of sequencing methods (eg, Next-Generation Sequencing, NGS), the accurate genotyping of this region has become possible but remains relatively costly. In order to obtain the HLA information for the millions of samples already genotyped by chips in the past ten years, efficient bioinformatics tools, such as SNP2HLA or HIBAG, have been developed that infer HLA information from the linkage disequilibrium existing between HLA alleles and SNP markers in the MHC region.
In this study, we first used ShapeIT and Impute2 to implement an imputation method akin to SNP2HLA and found a comparable quality of imputation on a European dataset. More importantly, we developed a new tool, HLA-check, that allows for the detection of aberrant HLA allele calling with regard to the SNP genotypes in the region. Adding this tool to the HLA imputation software increases dramatically their accuracy, especially for HLA class I genes.
Overall, HLA-check was able to identify a limited number of implausible HLA typings (less than 10%) in a population, and these samples can then either be removed or be retyped by NGS for HLA association analysis.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/s12859-017-1746-1</identifier><identifier>PMID: 28697761</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Aberration ; Accuracy ; Algorithms ; Alleles ; Antigens ; Archives & records ; Association analysis ; Binding sites ; Bioinformatics ; Chips ; Consortia ; Diabetes ; European Continental Ancestry Group - genetics ; Genes ; Genetic aspects ; Genetics ; Genomes ; Genomics ; Genotypes ; Genotyping ; Genotyping Techniques - methods ; Histocompatibility antigen HLA ; Histocompatibility antigens ; Histocompatibility Antigens Class I - genetics ; Histocompatibility Testing ; HLA Antigens - genetics ; HLA histocompatibility antigens ; Human leukocyte antigen ; Humans ; Imputation ; Linkage Disequilibrium ; Major histocompatibility complex ; Polymorphism, Single Nucleotide ; Population ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Software ; Studies ; Transplants & implants</subject><ispartof>BMC bioinformatics, 2017-07, Vol.18 (1), p.334-334, Article 334</ispartof><rights>COPYRIGHT 2017 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2017</rights><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-9b9d50116f5908c20d955a1f5a03a51257b3d10c930ae6fba32c09533e73cc953</citedby><cites>FETCH-LOGICAL-c594t-9b9d50116f5908c20d955a1f5a03a51257b3d10c930ae6fba32c09533e73cc953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504728/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1925070347?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28697761$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeanmougin, Marc</creatorcontrib><creatorcontrib>Noirel, Josselin</creatorcontrib><creatorcontrib>Coulonges, Cédric</creatorcontrib><creatorcontrib>Zagury, Jean-François</creatorcontrib><title>HLA-check: evaluating HLA data from SNP information</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>The major histocompatibility complex (MHC) region of the human genome, and specifically the human leukocyte antigen (HLA) genes, play a major role in numerous human diseases. With the recent progress of sequencing methods (eg, Next-Generation Sequencing, NGS), the accurate genotyping of this region has become possible but remains relatively costly. In order to obtain the HLA information for the millions of samples already genotyped by chips in the past ten years, efficient bioinformatics tools, such as SNP2HLA or HIBAG, have been developed that infer HLA information from the linkage disequilibrium existing between HLA alleles and SNP markers in the MHC region.
In this study, we first used ShapeIT and Impute2 to implement an imputation method akin to SNP2HLA and found a comparable quality of imputation on a European dataset. More importantly, we developed a new tool, HLA-check, that allows for the detection of aberrant HLA allele calling with regard to the SNP genotypes in the region. Adding this tool to the HLA imputation software increases dramatically their accuracy, especially for HLA class I genes.
Overall, HLA-check was able to identify a limited number of implausible HLA typings (less than 10%) in a population, and these samples can then either be removed or be retyped by NGS for HLA association analysis.</description><subject>Aberration</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Alleles</subject><subject>Antigens</subject><subject>Archives & records</subject><subject>Association analysis</subject><subject>Binding sites</subject><subject>Bioinformatics</subject><subject>Chips</subject><subject>Consortia</subject><subject>Diabetes</subject><subject>European Continental Ancestry Group - genetics</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotypes</subject><subject>Genotyping</subject><subject>Genotyping Techniques - methods</subject><subject>Histocompatibility antigen HLA</subject><subject>Histocompatibility antigens</subject><subject>Histocompatibility Antigens Class I - genetics</subject><subject>Histocompatibility Testing</subject><subject>HLA Antigens - genetics</subject><subject>HLA histocompatibility antigens</subject><subject>Human leukocyte antigen</subject><subject>Humans</subject><subject>Imputation</subject><subject>Linkage Disequilibrium</subject><subject>Major histocompatibility complex</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Population</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Software</subject><subject>Studies</subject><subject>Transplants & implants</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptksFu1DAQhiMEoqXwAFxQJC5wSPHYcWxzQFpVtF1pBYjC2Zp1nNRLErd2UsHb47Cl2iDkg8cz3_wjj_4sewnkFEBW7yJQyVVBQBQgyqqAR9kxlAIKCoQ_PoiPsmcx7kgCJeFPsyMqKyVEBccZu9ysCnNtzY_3ub3DbsLRDW2esnmNI-ZN8H1-9elL7obGhz5V_fA8e9JgF-2L-_sk-37-8dvZZbH5fLE-W20Kw1U5Fmqrak4AqoYrIg0lteIcoeFIGHKgXGxZDcQoRtBWzRYZNURxxqxgxqTgJFvvdWuPO30TXI_hl_bo9J-ED63GMDrTWY2VVIqhMChFKZmQNE0y6W1Fo2paJa0Pe62badvb2thhDNgtRJeVwV3r1t9pzkkpqEwCb-4Fgr-dbBx176KxXYeD9VPUoCDNrQQRCX39D7rzUxjSqhJFORGElQdUi-kD83rTXDOL6hUHYGUp-Tz29D9UOrXtnfGDbVzKLxreLhoSM9qfY4tTjHp99XXJwp41wccYbPOwDyB6dpjeO0wn4-jZYRpSz6vDRT50_LUU-w3rtcYk</recordid><startdate>20170711</startdate><enddate>20170711</enddate><creator>Jeanmougin, Marc</creator><creator>Noirel, Josselin</creator><creator>Coulonges, Cédric</creator><creator>Zagury, Jean-François</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170711</creationdate><title>HLA-check: evaluating HLA data from SNP information</title><author>Jeanmougin, Marc ; Noirel, Josselin ; Coulonges, Cédric ; Zagury, Jean-François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-9b9d50116f5908c20d955a1f5a03a51257b3d10c930ae6fba32c09533e73cc953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aberration</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Alleles</topic><topic>Antigens</topic><topic>Archives & records</topic><topic>Association analysis</topic><topic>Binding sites</topic><topic>Bioinformatics</topic><topic>Chips</topic><topic>Consortia</topic><topic>Diabetes</topic><topic>European Continental Ancestry Group - genetics</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotypes</topic><topic>Genotyping</topic><topic>Genotyping Techniques - methods</topic><topic>Histocompatibility antigen HLA</topic><topic>Histocompatibility antigens</topic><topic>Histocompatibility Antigens Class I - genetics</topic><topic>Histocompatibility Testing</topic><topic>HLA Antigens - genetics</topic><topic>HLA histocompatibility antigens</topic><topic>Human leukocyte antigen</topic><topic>Humans</topic><topic>Imputation</topic><topic>Linkage Disequilibrium</topic><topic>Major histocompatibility complex</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Population</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Software</topic><topic>Studies</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeanmougin, Marc</creatorcontrib><creatorcontrib>Noirel, Josselin</creatorcontrib><creatorcontrib>Coulonges, Cédric</creatorcontrib><creatorcontrib>Zagury, Jean-François</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeanmougin, Marc</au><au>Noirel, Josselin</au><au>Coulonges, Cédric</au><au>Zagury, Jean-François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HLA-check: evaluating HLA data from SNP information</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2017-07-11</date><risdate>2017</risdate><volume>18</volume><issue>1</issue><spage>334</spage><epage>334</epage><pages>334-334</pages><artnum>334</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>The major histocompatibility complex (MHC) region of the human genome, and specifically the human leukocyte antigen (HLA) genes, play a major role in numerous human diseases. With the recent progress of sequencing methods (eg, Next-Generation Sequencing, NGS), the accurate genotyping of this region has become possible but remains relatively costly. In order to obtain the HLA information for the millions of samples already genotyped by chips in the past ten years, efficient bioinformatics tools, such as SNP2HLA or HIBAG, have been developed that infer HLA information from the linkage disequilibrium existing between HLA alleles and SNP markers in the MHC region.
In this study, we first used ShapeIT and Impute2 to implement an imputation method akin to SNP2HLA and found a comparable quality of imputation on a European dataset. More importantly, we developed a new tool, HLA-check, that allows for the detection of aberrant HLA allele calling with regard to the SNP genotypes in the region. Adding this tool to the HLA imputation software increases dramatically their accuracy, especially for HLA class I genes.
Overall, HLA-check was able to identify a limited number of implausible HLA typings (less than 10%) in a population, and these samples can then either be removed or be retyped by NGS for HLA association analysis.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>28697761</pmid><doi>10.1186/s12859-017-1746-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2105 |
ispartof | BMC bioinformatics, 2017-07, Vol.18 (1), p.334-334, Article 334 |
issn | 1471-2105 1471-2105 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a68993a7ca874837825a1ca7ce7f9d26 |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Aberration Accuracy Algorithms Alleles Antigens Archives & records Association analysis Binding sites Bioinformatics Chips Consortia Diabetes European Continental Ancestry Group - genetics Genes Genetic aspects Genetics Genomes Genomics Genotypes Genotyping Genotyping Techniques - methods Histocompatibility antigen HLA Histocompatibility antigens Histocompatibility Antigens Class I - genetics Histocompatibility Testing HLA Antigens - genetics HLA histocompatibility antigens Human leukocyte antigen Humans Imputation Linkage Disequilibrium Major histocompatibility complex Polymorphism, Single Nucleotide Population Single nucleotide polymorphisms Single-nucleotide polymorphism Software Studies Transplants & implants |
title | HLA-check: evaluating HLA data from SNP information |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A06%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HLA-check:%20evaluating%20HLA%20data%20from%20SNP%20information&rft.jtitle=BMC%20bioinformatics&rft.au=Jeanmougin,%20Marc&rft.date=2017-07-11&rft.volume=18&rft.issue=1&rft.spage=334&rft.epage=334&rft.pages=334-334&rft.artnum=334&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/s12859-017-1746-1&rft_dat=%3Cgale_doaj_%3EA511344858%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-9b9d50116f5908c20d955a1f5a03a51257b3d10c930ae6fba32c09533e73cc953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1925070347&rft_id=info:pmid/28697761&rft_galeid=A511344858&rfr_iscdi=true |