Loading…

Mathematical Modelling and Optimal Control Strategies of a Multistrain COVID-19 Spread

In this paper, we propose a continuous mathematical model that describes the spread of multistrains COVID-19 virus among humans: susceptible, exposed, infected, quarantined, hospitalized, and recovered individuals. The positivity and boundedness of the system solution are provided in order to get th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied mathematics 2022-07, Vol.2022, p.1-14
Main Authors: Khajji, Bouchaib, Boujallal, Lahoucine, Balatif, Omar, Rachik, Mostafa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-9710492d7b3c5dc4ddcff7f6afbc0b3fc40e755b84b803be97e9531f646101f23
cites cdi_FETCH-LOGICAL-c400t-9710492d7b3c5dc4ddcff7f6afbc0b3fc40e755b84b803be97e9531f646101f23
container_end_page 14
container_issue
container_start_page 1
container_title Journal of applied mathematics
container_volume 2022
creator Khajji, Bouchaib
Boujallal, Lahoucine
Balatif, Omar
Rachik, Mostafa
description In this paper, we propose a continuous mathematical model that describes the spread of multistrains COVID-19 virus among humans: susceptible, exposed, infected, quarantined, hospitalized, and recovered individuals. The positivity and boundedness of the system solution are provided in order to get the well posedness of the proposed model. Secondly, three controls are considered in our model to minimize the multistrain spread of the disease, namely, vaccination, security campaigns, social distancing measures, and diagnosis. Furthermore, the optimal control problem and related optimality conditions of the Pontryagin type are discussed with the objective to minimize the number of infected individuals. Finally, numerical simulations are performed in the case of two strains of COVID-19 and with four control strategies. By using the incremental cost-effectiveness ratio (ICER) method, we show that combining vaccination with diagnosis provides the most cost-effective strategy.
doi_str_mv 10.1155/2022/9071890
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a692d31af1e846f28ba9ab27e0c2cb24</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A711330635</galeid><doaj_id>oai_doaj_org_article_a692d31af1e846f28ba9ab27e0c2cb24</doaj_id><sourcerecordid>A711330635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-9710492d7b3c5dc4ddcff7f6afbc0b3fc40e755b84b803be97e9531f646101f23</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhgexYK298wcEvNRpT5LJZHJZ1qoLXfaiH3gXzuRjm2V2siZZxH9v6hZFEMlFwstz3nNO3qZ5S-GCUiEuGTB2qUDSQcGL5pT2g2wBOvayvimFVgr59VXzOuctAAOh6GnzsMLy6HZYgsGJrKJ10xTmDcHZkvW-hF1VF3EuKU7ktiQsbhNcJtETJKvDVEKuYpjJYv2w_NhSRW73yaF905x4nLI7f77PmvtP13eLL-3N-vNycXXTmg6gtEpS6BSzcuRGWNNZa7yXvkc_Ghi5r5STQoxDNw7AR6ekU4JT33c9BeoZP2uWR18bcav3qc6bfuiIQf8SYtpoTHW3yWnsayNO0VM3dL1nw4gKRyYdGGZG1lWvd0evfYrfDi4XvY2HNNfxNesVF4ozxf9QG6ymYfaxfoDZhWz0laSUc-i5qNTFP6h6rNsFE2fnQ9X_KvhwLDAp5pyc_70MBf0Urn4KVz-HW_H3R_wxzBa_h__TPwFNCKCv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693593293</pqid></control><display><type>article</type><title>Mathematical Modelling and Optimal Control Strategies of a Multistrain COVID-19 Spread</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Coronavirus Research Database</source><creator>Khajji, Bouchaib ; Boujallal, Lahoucine ; Balatif, Omar ; Rachik, Mostafa</creator><contributor>Werner, Frank ; Frank Werner</contributor><creatorcontrib>Khajji, Bouchaib ; Boujallal, Lahoucine ; Balatif, Omar ; Rachik, Mostafa ; Werner, Frank ; Frank Werner</creatorcontrib><description>In this paper, we propose a continuous mathematical model that describes the spread of multistrains COVID-19 virus among humans: susceptible, exposed, infected, quarantined, hospitalized, and recovered individuals. The positivity and boundedness of the system solution are provided in order to get the well posedness of the proposed model. Secondly, three controls are considered in our model to minimize the multistrain spread of the disease, namely, vaccination, security campaigns, social distancing measures, and diagnosis. Furthermore, the optimal control problem and related optimality conditions of the Pontryagin type are discussed with the objective to minimize the number of infected individuals. Finally, numerical simulations are performed in the case of two strains of COVID-19 and with four control strategies. By using the incremental cost-effectiveness ratio (ICER) method, we show that combining vaccination with diagnosis provides the most cost-effective strategy.</description><identifier>ISSN: 1110-757X</identifier><identifier>EISSN: 1687-0042</identifier><identifier>DOI: 10.1155/2022/9071890</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Analysis ; Coronaviruses ; COVID-19 ; Diagnosis ; Disease control ; Disease prevention ; Disease transmission ; Epidemics ; Hospitalization ; Infections ; Investigations ; Mathematical analysis ; Mathematical models ; Mutation ; Numerical analysis ; Optimal control ; Optimization ; Pandemics ; Population ; Quarantine ; Severe acute respiratory syndrome coronavirus 2 ; Surveillance ; Viral diseases ; Viruses</subject><ispartof>Journal of applied mathematics, 2022-07, Vol.2022, p.1-14</ispartof><rights>Copyright © 2022 Bouchaib Khajji et al.</rights><rights>COPYRIGHT 2022 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2022 Bouchaib Khajji et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-9710492d7b3c5dc4ddcff7f6afbc0b3fc40e755b84b803be97e9531f646101f23</citedby><cites>FETCH-LOGICAL-c400t-9710492d7b3c5dc4ddcff7f6afbc0b3fc40e755b84b803be97e9531f646101f23</cites><orcidid>0000-0002-0716-4492 ; 0000-0001-7758-2844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2693593293/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2693593293?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,38516,43895,44590,74284,74998</link.rule.ids></links><search><contributor>Werner, Frank</contributor><contributor>Frank Werner</contributor><creatorcontrib>Khajji, Bouchaib</creatorcontrib><creatorcontrib>Boujallal, Lahoucine</creatorcontrib><creatorcontrib>Balatif, Omar</creatorcontrib><creatorcontrib>Rachik, Mostafa</creatorcontrib><title>Mathematical Modelling and Optimal Control Strategies of a Multistrain COVID-19 Spread</title><title>Journal of applied mathematics</title><description>In this paper, we propose a continuous mathematical model that describes the spread of multistrains COVID-19 virus among humans: susceptible, exposed, infected, quarantined, hospitalized, and recovered individuals. The positivity and boundedness of the system solution are provided in order to get the well posedness of the proposed model. Secondly, three controls are considered in our model to minimize the multistrain spread of the disease, namely, vaccination, security campaigns, social distancing measures, and diagnosis. Furthermore, the optimal control problem and related optimality conditions of the Pontryagin type are discussed with the objective to minimize the number of infected individuals. Finally, numerical simulations are performed in the case of two strains of COVID-19 and with four control strategies. By using the incremental cost-effectiveness ratio (ICER) method, we show that combining vaccination with diagnosis provides the most cost-effective strategy.</description><subject>Analysis</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Diagnosis</subject><subject>Disease control</subject><subject>Disease prevention</subject><subject>Disease transmission</subject><subject>Epidemics</subject><subject>Hospitalization</subject><subject>Infections</subject><subject>Investigations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mutation</subject><subject>Numerical analysis</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Pandemics</subject><subject>Population</subject><subject>Quarantine</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Surveillance</subject><subject>Viral diseases</subject><subject>Viruses</subject><issn>1110-757X</issn><issn>1687-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kV1rFDEUhgexYK298wcEvNRpT5LJZHJZ1qoLXfaiH3gXzuRjm2V2siZZxH9v6hZFEMlFwstz3nNO3qZ5S-GCUiEuGTB2qUDSQcGL5pT2g2wBOvayvimFVgr59VXzOuctAAOh6GnzsMLy6HZYgsGJrKJ10xTmDcHZkvW-hF1VF3EuKU7ktiQsbhNcJtETJKvDVEKuYpjJYv2w_NhSRW73yaF905x4nLI7f77PmvtP13eLL-3N-vNycXXTmg6gtEpS6BSzcuRGWNNZa7yXvkc_Ghi5r5STQoxDNw7AR6ekU4JT33c9BeoZP2uWR18bcav3qc6bfuiIQf8SYtpoTHW3yWnsayNO0VM3dL1nw4gKRyYdGGZG1lWvd0evfYrfDi4XvY2HNNfxNesVF4ozxf9QG6ymYfaxfoDZhWz0laSUc-i5qNTFP6h6rNsFE2fnQ9X_KvhwLDAp5pyc_70MBf0Urn4KVz-HW_H3R_wxzBa_h__TPwFNCKCv</recordid><startdate>20220716</startdate><enddate>20220716</enddate><creator>Khajji, Bouchaib</creator><creator>Boujallal, Lahoucine</creator><creator>Balatif, Omar</creator><creator>Rachik, Mostafa</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0716-4492</orcidid><orcidid>https://orcid.org/0000-0001-7758-2844</orcidid></search><sort><creationdate>20220716</creationdate><title>Mathematical Modelling and Optimal Control Strategies of a Multistrain COVID-19 Spread</title><author>Khajji, Bouchaib ; Boujallal, Lahoucine ; Balatif, Omar ; Rachik, Mostafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-9710492d7b3c5dc4ddcff7f6afbc0b3fc40e755b84b803be97e9531f646101f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Diagnosis</topic><topic>Disease control</topic><topic>Disease prevention</topic><topic>Disease transmission</topic><topic>Epidemics</topic><topic>Hospitalization</topic><topic>Infections</topic><topic>Investigations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mutation</topic><topic>Numerical analysis</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Pandemics</topic><topic>Population</topic><topic>Quarantine</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Surveillance</topic><topic>Viral diseases</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khajji, Bouchaib</creatorcontrib><creatorcontrib>Boujallal, Lahoucine</creatorcontrib><creatorcontrib>Balatif, Omar</creatorcontrib><creatorcontrib>Rachik, Mostafa</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khajji, Bouchaib</au><au>Boujallal, Lahoucine</au><au>Balatif, Omar</au><au>Rachik, Mostafa</au><au>Werner, Frank</au><au>Frank Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Modelling and Optimal Control Strategies of a Multistrain COVID-19 Spread</atitle><jtitle>Journal of applied mathematics</jtitle><date>2022-07-16</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1110-757X</issn><eissn>1687-0042</eissn><abstract>In this paper, we propose a continuous mathematical model that describes the spread of multistrains COVID-19 virus among humans: susceptible, exposed, infected, quarantined, hospitalized, and recovered individuals. The positivity and boundedness of the system solution are provided in order to get the well posedness of the proposed model. Secondly, three controls are considered in our model to minimize the multistrain spread of the disease, namely, vaccination, security campaigns, social distancing measures, and diagnosis. Furthermore, the optimal control problem and related optimality conditions of the Pontryagin type are discussed with the objective to minimize the number of infected individuals. Finally, numerical simulations are performed in the case of two strains of COVID-19 and with four control strategies. By using the incremental cost-effectiveness ratio (ICER) method, we show that combining vaccination with diagnosis provides the most cost-effective strategy.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/9071890</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0716-4492</orcidid><orcidid>https://orcid.org/0000-0001-7758-2844</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-757X
ispartof Journal of applied mathematics, 2022-07, Vol.2022, p.1-14
issn 1110-757X
1687-0042
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a692d31af1e846f28ba9ab27e0c2cb24
source Wiley-Blackwell Open Access Collection; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Coronavirus Research Database
subjects Analysis
Coronaviruses
COVID-19
Diagnosis
Disease control
Disease prevention
Disease transmission
Epidemics
Hospitalization
Infections
Investigations
Mathematical analysis
Mathematical models
Mutation
Numerical analysis
Optimal control
Optimization
Pandemics
Population
Quarantine
Severe acute respiratory syndrome coronavirus 2
Surveillance
Viral diseases
Viruses
title Mathematical Modelling and Optimal Control Strategies of a Multistrain COVID-19 Spread
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Modelling%20and%20Optimal%20Control%20Strategies%20of%20a%20Multistrain%20COVID-19%20Spread&rft.jtitle=Journal%20of%20applied%20mathematics&rft.au=Khajji,%20Bouchaib&rft.date=2022-07-16&rft.volume=2022&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1110-757X&rft.eissn=1687-0042&rft_id=info:doi/10.1155/2022/9071890&rft_dat=%3Cgale_doaj_%3EA711330635%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-9710492d7b3c5dc4ddcff7f6afbc0b3fc40e755b84b803be97e9531f646101f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2693593293&rft_id=info:pmid/&rft_galeid=A711330635&rfr_iscdi=true