Loading…

Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis

Past studies of the end-Permian extinction (EPE), the largest biotic crisis of the Phanerozoic, have not resolved the timing of events in southern high-latitudes. Here we use palynology coupled with high-precision CA-ID-TIMS dating of euhedral zircons from continental sequences of the Sydney Basin,...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2019-01, Vol.10 (1), p.385-385, Article 385
Main Authors: Fielding, Christopher R., Frank, Tracy D., McLoughlin, Stephen, Vajda, Vivi, Mays, Chris, Tevyaw, Allen P., Winguth, Arne, Winguth, Cornelia, Nicoll, Robert S., Bocking, Malcolm, Crowley, James L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Past studies of the end-Permian extinction (EPE), the largest biotic crisis of the Phanerozoic, have not resolved the timing of events in southern high-latitudes. Here we use palynology coupled with high-precision CA-ID-TIMS dating of euhedral zircons from continental sequences of the Sydney Basin, Australia, to show that the collapse of the austral Permian Glossopteris flora occurred prior to 252.3 Ma (~370 kyrs before the main marine extinction). Weathering proxies indicate that floristic changes occurred during a brief climate perturbation in a regional alluvial landscape that otherwise experienced insubstantial change in fluvial style, insignificant reorganization of the depositional surface, and no abrupt aridification. Palaeoclimate modelling suggests a moderate shift to warmer summer temperatures and amplified seasonality in temperature across the EPE, and warmer and wetter conditions for all seasons into the Early Triassic. The terrestrial EPE and a succeeding peak in Ni concentration in the Sydney Basin correlate, respectively, to the onset of the primary extrusive and intrusive phases of the Siberian Traps Large Igneous Province. The continental record of the end Permian mass extinction is limited, especially from high paleolatitudes. Here, Fielding et al. report a multi-proxy Permo-Triassic record from Australia, resolving the timing of local terrestrial plant extinction and the relationship with environmental changes.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-07934-z